AP Chemistry CORRELATION

for Chemistry: The Molecular Nature of Matter and Change

By Martin S. Silberberg & Patricia G. Amateis 8th Edition, © 2018 ISBN 978-0-07-680598-3 Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions

Enduring Understanding 1.A. All matter is made of atoms. There are a limited number of types of atoms; these are the elements.

Essential Knowledge (EK) or Learning Objective (LO) (EK) 1.A.1. Molecules are composed of specific combinations of atoms; different molecules are composed of combinations of different elements and of combinations of the same elements in differing amounts and proportions.

Essential Knowledge Component	Reference
a. The average mass of any large number of	44
atoms of a given element is always the same for	
a given element.	
b. A pure sample contains particles (or units) of	44-45
one specific atom or molecule; a mixture	
contains particles (or units) of more than one	
specific atom or molecule.	
c. Because the molecules of a particular	44
compound are always composed of the	
identical combination of atoms in a specific	
ratio, the ratio of the masses of the constituent	
elements in any pure sample of that compound	
is always the same.	
d. Pairs of elements that form more than one	49-50
type of molecule are nonetheless	
limited by their atomic nature to combine in	
whole number ratios. This discrete nature can	
be confirmed by calculating the difference in	
mass percent ratios between such types of	
molecules.	
Big idea i: The chemical elements are fundame	ental building materials of matter, and all
identity in chemical reactions	nents of atoms. These atoms retain their
Enduring Understanding 1 A. All matter is made	of stoms. There are a limited number of types of
atoms: these are the elements	of atoms. There are a limited humber of types of
Learning Objective	Reference
(I O) 11 The student can justify the observation	44 87 Concept Review Question 2 14-2 20
that the ratio of the masses of the constituent	
elements in any pure sample of that compound	
is always identical on the basis of the atomic	
molecular theory. [See SP 6.1]	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arrangen	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.A. All matter is made	of atoms. There are a limited number of types of
atoms; these are the elements.	
Essential Knowledge 1.A.2. Chemical analysis pro	ovides a method for determining the relative
number of atoms in a substance, which can be us	ed to identify the substance or determine its
purity.	
Essential Knowledge Component	Reference
a. Because compounds are composed of atoms	102-104
with known masses, there is a correspondence	
between the mass percent of the elements in a	

compound and the relative number of atoms of	
each element.	
b. An empirical formula is the lowest whole	104-106
number ratio of atoms in a compound. Two	
molecules of the same elements with identical	
mass percent of their constituent atoms will	
have identical empirical formulas.	
c. Because pure compounds have a specific	106-109
mass percent of each element, experimental	
measurements of mass percents can be used to	
verify the purity of compounds.	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arranger	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.A. All matter is made	of atoms. There are a limited number of types of
atoms; these are the elements.	
Learning Objective	Reference
(LO) 1.2. The student is able to select and apply	106-109; 137, Skill-Building Exercise 3.42
mathematical routines to mass data to identify	
or infer the composition of pure substances	
and/or mixtures. [See SP 2.2]	
(LO) 1.3. The student is able to select and apply	102-104; 137, Problems in Context 3.48
mathematical relationships to mass data in	
order to justify a claim regarding the identity	
and/or estimated purity of a substance. [See SP	
2.2. 6.1]	
,]	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger	ental building materials of matter, and all nents of atoms. These atoms retain their
Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions.	ental building materials of matter, and all nents of atoms. These atoms retain their
Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of
Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements.	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of
Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the funda-	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fund- the macroscopic level and allows quantitative cor 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on inections to be drawn between laboratory
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fund- the macroscopic level and allows quantitative cor experiments, which occur at the macroscopic level 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on anections to be drawn between laboratory el, and chemical processes, which occur at the
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fund- the macroscopic level and allows quantitative cor experiments, which occur at the macroscopic level atomic level. 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on inections to be drawn between laboratory el, and chemical processes, which occur at the
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fund- the macroscopic level and allows quantitative cor experiments, which occur at the macroscopic level atomic level. Essential Knowledge Component 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on anections to be drawn between laboratory el, and chemical processes, which occur at the Reference
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fund- the macroscopic level and allows quantitative cor experiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on inections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fund- the macroscopic level and allows quantitative cor experiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on unections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fund- the macroscopic level and allows quantitative cor experiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on anections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative corresperiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on anections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative cor experiments, which occur at the macroscopic level and allows quantitative cor experiments, which occur at the macroscopic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on nections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level and allows quantitative corresperiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on inections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level and allows quantitative correxperiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on unections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level and allows quantitative correxperiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to understanding chemical processes. 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on inections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level and allows quantitative correxperiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to understanding chemical processes. b. Expressing the mass of an individual atom or 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on anections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102 95-98
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative cor experiments, which occur at the macroscopic level and allows quantitative cor experiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to understanding chemical processes. b. Expressing the mass of an individual atom or molecule in atomic mass unit (amu) is useful 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on inections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102 95-98
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level and allows quantitative correatomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to understanding chemical processes. b. Expressing the mass of an individual atom or molecule in atomic mass unit (amu) is useful because the average mass in amu of one 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on inections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102 95-98
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level and allows quantitative correxperiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to understanding chemical processes. b. Expressing the mass of an individual atom or molecule in atomic mass unit (amu) is useful because the average mass in amu of one particle (atom or molecule) of a substance will 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on unections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102 95-98
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level and allows quantitative corresperiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to understanding chemical processes. b. Expressing the mass of an individual atom or molecule in atomic mass unit (amu) is useful because the average mass in amu of one particle (atom or molecule) of a substance will always be numerically equal to the molar mass 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on nections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102 95-98
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level and allows quantitative correatomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to understanding chemical processes. b. Expressing the mass of an individual atom or molecule in atomic mass unit (amu) is useful because the average mass in amu of one particle (atom or molecule) of a substance will always be numerically equal to the molar mass of that substance in grams. 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on nections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102 95-98
 Big Idea 1: The chemical elements are fundame matter can be understood in terms of arranger identity in chemical reactions. Enduring Understanding 1.A. All matter is made atoms; these are the elements. Essential Knowledge 1.A.3. The mole is the fundative correxperiments, which occur at the macroscopic level atomic level. Essential Knowledge Component a. Atoms and molecules interact with one another on the atomic level. Balanced chemical equations give the number of particles that react and the number of particles produced. Because of this, expressing the amount of a substance in terms of the number of particles, or moles of particles, is essential to understanding chemical processes. b. Expressing the mass of an individual atom or molecule in atomic mass unit (amu) is useful because the average mass in amu of one particle (atom or molecule) of a substance will always be numerically equal to the molar mass of that substance in grams. c. Avogadro's number provides the connection 	ental building materials of matter, and all nents of atoms. These atoms retain their of atoms. There are a limited number of types of amental unit for counting numbers of particles on mections to be drawn between laboratory el, and chemical processes, which occur at the Reference 95-102 95-98

of a substance and the number of constituent	
particles (or units) of that substance.	
d. Thus, for any sample of a pure substance,	95-102
there is a specific numerical relationship	
between the molar mass of the substance, the	
mass of the sample, and the number of particles	
(or units) present.	
Big Idea 1. The chemical elements are fundam	ental building materials of matter and all
matter can be understood in terms of arranger	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.A. All matter is made	of atoms. There are a limited number of types of
atoms; these are the elements.	
Learning Objective	Reference
LO 1.4. The student is able to connect the	95-102; 136, Problems in Context 3.25
number of particles, moles, mass, and	
volume of substances to one another, both	
qualitatively and quantitatively. [See SP 7.1]	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arranger	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.B. The atoms of each	element have unique structures arising from
interactions between electrons and nuclei.	
Essential Knowledge 1.B.1. The atom is compose	ed of negatively charged electrons, which can
leave the atom, and a positively charged nucleus	that is made of protons and neutrons. The
attraction of the electrons to the nucleus is the ba	sis of the structure of the atom. Coulomb's law is
qualitatively useful for understanding the structure of the atom.	
qualitatively useful for anacistanting the structur	
Essential Knowledge Component	Reference
Essential Knowledge Component a. Based on Coulomb's law, the force between	Reference 64-66
Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the	Reference 64-66
Essential Knowledge Componenta. Based on Coulomb's law, the force betweentwo charged particles is proportional to themagnitude of each of the two charges (q1 and	Reference 64-66
Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of	Reference 64-66
Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy	Reference 64-66
Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are	Reference 64-66
Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is	Reference 64-66
Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force	Reference 64-66
Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive.	Reference 64-66
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum 	Reference 64-66 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held 	Reference 64-66 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the 	Reference 64-66 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or 	Reference 64-66 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove 	Reference 64-66 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. 	Reference 64-66 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. 	Reference 64-66 348-350 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. c. The relative magnitude of the ionization energy can be estimated through 	Reference 64-66 348-350 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. c. The relative magnitude of the ionization energy can be estimated through qualitative application of Coulomb's law. The 	Reference 64-66 348-350 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. c. The relative magnitude of the ionization energy can be estimated through qualitative application of Coulomb's law. The farther an electron is from the nucleus, the 	Reference 64-66 348-350 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. c. The relative magnitude of the ionization energy can be estimated through qualitative application of Coulomb's law. The farther an electron is from the nucleus, the lower its ionization energy. When comparing 	Reference 64-66 348-350 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. c. The relative magnitude of the ionization energy can be estimated through qualitative application of Coulomb's law. The farther an electron is from the nucleus, the lower its ionization energy. When comparing two species with the same arrangement of 	Reference 64-66 348-350 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. c. The relative magnitude of the ionization energy can be estimated through qualitative application of Coulomb's law. The farther an electron is from the nucleus, the lower its ionization energy. When comparing two species with the same arrangement of electrons, the higher the nuclear charge, the 	Reference 64-66 348-350 348-350
 Essential Knowledge Component a. Based on Coulomb's law, the force between two charged particles is proportional to the magnitude of each of the two charges (q1 and q2), and inversely proportional to the square of the distance, r, between them. (Potential energy is proportional to q1q2/r. If the two charges are of opposite sign, the force between them is attractive; if they are of the same sign, the force is repulsive. b. The first ionization energy is the minimum energy needed to remove the least tightly held electron from an atom or ion. In general, the ionization energy of any electron in an atom or ion is the minimum energy needed to remove that electron from the atom or ion. c. The relative magnitude of the ionization energy can be estimated through qualitative application of Coulomb's law. The farther an electron is from the nucleus, the lower its ionization energy. When comparing two species with the same arrangement of electron in a 	Reference 64-66 348-350 348-350

d. Photoelectron spectroscopy (PES) provides a	WebQuest 1
useful means to engage students in the use of	
quantum mechanics to interpret spectroscopic	
data and extract information on atomic structure	
from such data. In particular, low-resolution PES	
of atoms provides direct evidence for the shell	
model. Light consists of photons, each of which	
has energy E =hv , where h is Planck's constant	
and v is the frequency of the light. In the	
photoelectric effect, incident light ejects	
electrons from a material. This requires the	
photon to have sufficient energy to eject the	
electron. Photoelectron spectroscopy	
determines the energy needed to eject	
electrons from the material. Measurement of	
these energies provides a method to deduce	
the shell structure of an atom. The intensity of	
the photoelectron signal at a given energy is a	
measure of the number of electrons in that	
energy level.	
e. The electronic structure of atoms with	WebQuest 1
multiple electrons can be inferred from	
evidence provided by PES. For instance, both	
electrons in He are identical, and they are both	
roughly the same distance from the nucleus as	
in H, while there are two shells of electrons in	
Li, and the outermost electron is further from	
the nucleus than in H.	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arrangen	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.B. The atoms of each	element have unique structures arising from
Interactions between electrons and nuclei.	
Learning Objective	Reference
(LO) 1.5. The student is able to explain the	348-351; 364-365 Concept Review Questions
distribution of electrons in an atom or	8.48
ion based upon data. [See SP 1.5, 6.2]	
(LO) 1.6. The student is able to analyze data	348-351; 365 Concept Review Question 8.55
relating to electron energies for patterns and	
relationships. [See SP 5.1]	

Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions.

Enduring Understanding 1.B The atoms of each element have unique structures arising from interactions between electrons and nuclei.

Essential Knowledge 1.B.2. The electronic structure of the atom can be described using an electron configuration that reflects the concept of electrons in quantized energy levels or shells; the energetics of the electrons in the atom can be understood by consideration of Coulomb's law.

Essential Knowledge Component	Reference
a. Electron configurations provide a method for	335-345
describing the distribution of electrons in an	
atom or ion.	
b. Each electron in an atom has a different	333
ionization energy, which can be qualitatively	
explained through Coulomb's law.	
c. In multielectron atoms and ions, the electrons	342
can be thought of as being in "shells" and	
"subshells," as indicated by the relatively close	
ionization energies associated with some	
groups of electrons. Inner electrons are called	
core electrons, and outer electrons are called	
valence electrons.	
d. Core electrons are generally closer to the	333-334
nucleus than valence electrons, and they are	
considered to "shield" the valence electrons	
from the full electrostatic attraction of the	
nucleus. This phenomenon can be used in	
conjunction with Coulomb's law to	
explain/rationalize/predict relative ionization	
energies. Differences in electron-electron	
repulsion are responsible for the differences in	
energy between electrons in different orbitals in	
the same shell.	

Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions.

Enduring Understanding 1.B. The atoms of each element have unique structures arising from interactions between electrons and nuclei.

Learning Outcomes	Reference
(LO) 1.7. The student is able to describe the	333-334; 348-351; 365, Concept Review
electronic structure of the atom, using PES data,	Questions 8.49
ionization energy data, and/or Coulomb's law to	
construct explanations of how the energies of	
electrons within shells in atoms vary. [See SP	
5.1, 6.2]	
(LO) 1.8. The student is able to explain the	333; 350-351; 366, Comprehensive Problems
distribution of electrons using Coulomb's law to	8.92
analyze measured energies. [See SP 6.2]	

Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions.

Enduring Understanding 1.C. Elements display periodicity in their properties when the elements are organized according to increasing atomic number. This periodicity can be explained by the regular variations that occur in the electronic structures of atoms. Periodicity is a useful principle for understanding properties and predicting trends in properties. Its modern-day uses range from examining the composition of materials to generating ideas for designing new materials.

Essential Knowledge 1.C.1. Many properties of atoms exhibit periodic trends that are reflective of the periodicity of electronic structure.

Essential Knowledge Component	Reference
a. The structure of the periodic table is a	343-344
consequence of the pattern of electron	
configurations and the presence of shells (and	
subshells) of electrons in atoms.	
b. Ignoring the few exceptions, the electron	340-344
configuration for an atom can be deduced from	
the element's position in the periodic table.	
c. For many atomic properties, trends within the	345-352
periodic table (and relative values for different	
atoms and ions) can be qualitatively understood	
and explained using Coulomb's law, the shell	
model, and the concept of shielding/effective	
nuclear charge. These properties include:	
1. First ionization energy	
2. Atomic and ionic radii	
3. Electronegativity	
4. Typical ionic charges	
d. Periodicity is a useful tool when designing	WebQuest 2
new molecules or materials, since replacing an	
element of one group with another of the same	
group may lead to a new substance with similar	
properties. For instance, since SiO2 can be a	
ceramic, SnO2 may be as well.	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arrangen	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.C. Elements display p	eriodicity in their properties when the elements
are organized according to increasing atomic number. This periodicity can be explained by the	
regular variations that occur in the electronic strue	ctures of atoms. Periodicity is a useful principle
for understanding properties and predicting trenc	ls in properties. Its modern-day uses range from
examining the composition of materials to genera	ting ideas for designing new materials.
Learning Objective	Reference
(LO) 1.9. The student is able to predict and/or	345-352; 365, Concept Review Questions 8.49
justify trends in atomic properties based on	
location on the periodic table and/or the shell	
model. [See SP 6.4]	
(LO) 1.10. Students can justify with evidence the	345-352
arrangement of the periodic table and can apply	
periodic properties to chemical reactivity. [See	
SP 6.1]	

(LO) 1.11. The student can analyze data, based	353-355; 440, Comprehensive Problem 10.84
on periodicity and the properties of binary	
compounds, to identify patterns and generate	
hypotheses related to the molecular design of	
compounds for which data are not supplied.	
[See SP 3.1, 5.1]	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arranger	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.C. Elements display p	periodicity in their properties when the elements
are organized according to increasing atomic nur	nber. This periodicity can be explained by the
regular variations that occur in the electronic stru	ctures of atoms. Periodicity is a useful principle
for understanding properties and predicting trend	ls in properties. Its modern-day uses range from
examining the composition of materials to genera	iting ideas for designing new materials.
Essential Knowledge 1.C.2. The currently accept	ted best model of the atom is based on the
quantum mechanical model.	
Essential Knowledge Component	Reference
a. Coulomb's law is the basis for describing the	64-66
energy of interaction between protons and	
electrons.	
b. Electrons are not considered to follow	314-315
specific orbits. Chemists refer to the region of	
space in which an electron is found as an	
orbital.	000.000
c. Electrons in atoms have an intrinsic property	332-333
known as spin that can result in atoms having a	
magnetic moment. There can be at most two	
electrons in any orbital, and these electrons	
must have opposite spin.	210 212
a. The quantum mechanical (QM) model	310-312
shall model and is also consistent with atomic	
shell model and is also consistent with atomic	
periodic table	
a The OM model can be approximately solved	WebOuest 3
using computers and serves as the basis for	WebQuest 5
software that calculates the structure and	
reactivity of molecules	
Big Idea 1: The chemical elements are fundame	ntal building materials of matter, and all
matter can be understood in terms of arranger	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.C. Elements display of	periodicity in their properties when the elements
are organized according to increasing atomic nur	nber. This periodicity can be explained by the
regular variations that occur in the electronic stru	ctures of atoms. Periodicity is a useful principle
for understanding properties and predicting trend	ls in properties. Its modern-day uses range from
examining the composition of materials to genera	iting ideas for designing new materials.
Learning Objective	Reference
(LO) 1.12. The student is able to explain why a	310-312; 88 Concept Review Questions 2.30
given set of data suggests, or does not suggest,	and 2.35
the need to refine the atomic model from a	
classical shell model with the quantum	
mechanical model. [See SP 6.3]	

Big Idea 1: The chemical elements are fundamental building materials of matter, and all matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions.

Enduring Understanding 1.D. Atoms are so small that they are difficult to study directly; atomic models are constructed to explain experimental data on collections of atoms.

Essential Knowledge 1.D.1. As is the case with all scientific models, any model of the atom is subject to refinement and change in response to new experimental results. In that sense, an atomic model is not regarded as an exact description of the atom, but rather a theoretical construct that fits a set of experimental data.

Essential Knowledge Component	References
a. Scientists use experimental results to test	12-13
scientific models. When experimental results	
are not consistent with the predictions of a	
scientific model, the model must be revised or	
replaced with a new model that is able to	
predict/explain the new experimental results. A	
robust scientific model is one that can be used	
to explain/predict numerous results over a wide	
range of experimental circumstances.	
b. The construction of a shell model of the atom	WebQuest 4
through ionization energy information provides	
an opportunity to show how a model can be	
refined and changed as additional information is	
considered.	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arrangen	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.D. Atoms are so smal	I that they are difficult to study directly; atomic
models are constructed to explain experimental c	ata on collections of atoms.
Learning Objective	Reference
(LO) 1.13. Given information about a particular	12-13; 88 Concept Review Question 2.35
model of the atom, the student is able to	
determine if the model is consistent with	
specified evidence. [See SP 5.3]	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arrangen	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.D. Atoms are so smal	I that they are difficult to study directly; atomic
models are constructed to explain experimental d	ata on collections of atoms.
Essential Knowledge 1.D.2. An early model of the atom stated that all atoms of an element are	
identical. Mass spectrometry data demonstrate evidence that contradicts this early model.	
Essential Knowledge Component	Reference
a. Data from mass spectrometry demonstrate	58-61
evidence that an early model of the atom	
(Dalton's model) is incorrect; these data then	
require a modification of that model.	
b. Data from mass spectrometry also	58
demonstrate direct evidence of different	
isotopes from the same element.	
c. The average atomic mass can be estimated	60
from mass spectra.	

Big Idea 1: The chemical elements are fundamental building materials of matter, and all		
matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions.		
Enduring Understanding 1.D Atoms are so smal	I that they are difficult to study directly; atomic	
models are constructed to explain experimental data on collections of atoms.		
Learning Objective	Reference	
(LO) 1.14. The student is able to use data from	58; 88 Concept Review Questions 2.48	
mass spectrometry to identify the elements and		
the masses of individual atoms of a specific		
element. [See SP 1.4, 1.5]		
Big Idea 1: The chemical elements are fundamental building materials of matter, and all		
matter can be understood in terms of arrangements of atoms. These atoms retain their identity in chemical reactions		
Enduring Understanding 1.D. Atoms are so sma	Il that they are difficult to study directly; atomic	
models are constructed to explain experimental	data on collections of atoms.	
Essential Knowledge 1.D.3. The interaction of e	lectromagnetic waves or light with matter is a	
powerful means to probe the structure of atoms	and molecules, and to measure their	
concentration.		
Essential Knowledge Component	Reference	
a. The energy of a photon is related to the	300	
frequency of the electromagnetic wave through		
Planck's equation (E=hv). When a photon is		
absorbed (or emitted) by a molecule, the energy		
of the molecule is increased (or decreased) by		
an amount equal to the energy of the photon.		
b. Different types of molecular motion lead to	308-309; 384-385	
absorption or emission of photons in different		
spectral regions. Infrared radiation is associated		
with transitions in molecular vibrations and so		
can be used to detect the presence of different		
types of bonds. Ultraviolet/visible radiation is		
associated with transitions in electronic energy		
levels and so can be used to probe electronic		
structure.		
. The event of light cheer had by a colution	200: Design Veur Own Lab, Desr's Low and the	
c. The amount of light absorbed by a solution	309; Design Your Own Lab: Beer's Law and the	
the absorbing molecules in that solution via the	Rate of Reaction	
Rear Lambert law		
Pig Idea 1: The chamical elements are fundam	ontal building materials of matter, and all	
matter can be understood in terms of arrange	ments of atoms. These atoms retain their	
identity in chemical reactions	ments of atoms. These atoms retain their	
Enduring Understanding 1 D Atoms are so sma	Il that they are difficult to study directly: atomic	
models are constructed to explain experimental	data on collections of atoms.	
Learning Objective	Reference	
(LO) 1.15. The student can justify the selection	384-385: 309. Problem B7.2	
of a particular type of spectroscopy to		
measure properties associated with vibrational		
or electronic motions of molecules. [See SP		
4.1, 6.4]		
(LO) 1.16. The student can design and/or	308; 309 Problem B7.1	
interpret the results of an experiment		

regarding the absorption of light to determine		
the concentration of an absorbing species in a		
solution. [See SP 4.2, 5.1]		
Big Idea 1: The chemical elements are fundam	ental building materials of matter, and all	
matter can be understood in terms of arranger	nents of atoms. These atoms retain their	
identity in chemical reactions.		
Enduring Understanding 1.E. Atoms are conserv	ed in physical and chemical processes.	
Essential Knowledge 1.E.1. Physical and chemic	al processes can be depicted symbolically; when	
this is done, the illustration must conserve all ato	ms of all types.	
Essential Knowledge Component	Reference	
a. Various types of representations can be used	46-47	
to show that matter is conserved during		
chemical and physical processes.		
1. Symbolic representations		
2. Particulate drawings		
b. Because atoms must be conserved during a	46-47	
chemical process, it is possible to calculate		
product masses given known reactant masses,		
or to calculate reactant masses given product		
masses.		
c. The concept of conservation of atoms plays	46-47	
an important role in the interpretation and		
analysis of many chemical processes on the		
macroscopic scale. Conservation of atoms		
should be related to how nonradioactive atoms		
are neither lost nor gained as they cycle among		
land, water, atmosphere, and living organisms.		
Big Idea 1: The chemical elements are fundam	ental building materials of matter, and all	
matter can be understood in terms of arrange	ments of atoms. These atoms retain their	
identity in chemical reactions.		
Enduring Understanding 1.E. Atoms are conserv	ved in physical and chemical processes.	
Learning Objective	Reference	
(LO) 1.17. The student is able to express the law	46-47; 141, Comprehensive Problem 3.115	
of conservation of mass quantitatively and		
qualitatively using symbolic representations and		
particulate drawings. [See SP 1.5]		
Big Idea 1. The chemical elements are fundam	ental building materials of matter, and all	
matter can be understood in terms of arrangements of atoms. These atoms retain their		
identity in chemical reactions.		
Enduring Understanding 1.E. Atoms are conserved in physical and chemical processes		
Essential Knowledge 1.E.2. Conservation of ator	ns makes it possible to compute the masses of	
substances involved in physical and chemical pro	ocesses. Chemical processes result in the	
formation of new substances, and the amount of	these depends on the number and the types and	
masses of elements in the reactants, as well as the	ne efficiency of the transformation.	
Essential Knowledge Component	Reference	
a. The number of atoms, molecules, or formula	98-102	
units in a given mass of substance can be		
calculated.		
b. The subscripts in a chemical formula	68-70	
represent the number of atoms of each type in		
a molecule.		
c. The coefficients in a balanced chemical	111-113	

equation represent the relative numbers of	
particles that are consumed and created when	
the process occurs.	
d. The concept of conservation of atoms plays	111-113
an important role in the interpretation and	
analysis of many chemical processes on the	
macroscopic scale.	
e. In gravimetric analysis, a substance is added	162-164
to a solution that reacts specifically with a	
dissolved analyte (the chemical species that is	
the target of the analysis) to form a solid. The	
mass of solid formed can be used to infer the	
concentration of the analyte in the initial	
sample.	
f. Titrations may be used to determine the	172-174
concentration of an analyte in a solution. The	
titrant has a known concentration of a species	
that reacts specifically with the analyte. The	
equivalence of the titration occurs when the	
analyte is totally consumed by the reacting	
species in the titrant. The equivalence point is	
often indicated by a change in a property (such	
as color) that occurs when the equivalence	
point is reached. This observable event is called	
the end point of the titration.	
Big Idea 1: The chemical elements are fundame	ental building materials of matter, and all
matter can be understood in terms of arrangen	nents of atoms. These atoms retain their
identity in chemical reactions.	
Enduring Understanding 1.E. Atoms are conserv	ed in physical and chemical processes.
Learning Objective	Reference
(LO) 1.18. The student is able to apply	157-164; 139 Skill Building Exercises 3.79
conservation of atoms to the rearrangement of	
atoms in various processes. [See SP 1.4]	
(LO) 1.19. The student can design, and/or	162-164; 198 Problems in Context 4.47
interpret data from, an experiment that uses	
gravimetric analysis to determine the	
concentration of an analyte in a solution. [See	
SP 4.2, 5.1, 6.4]	
(LO) 1.20. The student can design, and/or	172-173; 198, Problems in Context, 4.55
interpret data from, an experiment that uses	
titration to determine the concentration of an	
analyte in a solution. [See SP 4.2, 5.1, 6.4]	

Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them.

Enduring Understanding 2.A. Matter can be described by its physical properties. The physical properties of a substance generally depend on the spacing between the particles (atoms, molecules, ions) that make up the substance and the forces of attraction among them.

Essential Knowledge 2.A.1. The different properties of solids and liquids can be explained by differences in their structures, both at the particulate level and in their supramolecular structures.

Essential Knowledge Component	Reference
a. Solids can be crystalline, where the particles	495-498
are arranged in a regular 3-D structure, or they	
can be amorphous, where the particles do not	
have a regular, orderly arrangement. In both	
cases, the motion of the individual particles is	
limited, and the particles do not undergo any	
overall translation with respect to each other.	
Interparticle interactions and the ability to pack	
the particles together provide the main criteria	
for the structures of solids.	
b. The constituent particles in liquids are very	4, 490-492
close to each other, and they are continually	
moving and colliding. The particles are able to	
undergo translation with respect to each other	
and their arrangement, and movement is	
influenced by the nature and strength of the	
intermolecular forces that are present.	
c . The solid and liquid phases for a particular	4
substance generally have relatively small	
differences in molar volume because in both	
cases the constituent particles are very close to	
each other at all times.	
d. The differences in other properties, such as	484-493; 495-501
viscosity, surface tension, and volumes of	
mixing (for liquids), and hardness and	
macroscopic crystal structure (for solids), can be	
explained by differences in the strength of	
attraction between the particles and/or their	
overall organization	
e. Heating and cooling curves for pure	475-477
substances provide insight into the energetics	
of liquid/solid phase changes.	
Big Idea 2: Chemical and physical properties o	f materials can be explained by the structure
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.A. Matter can be des	cribed by its physical properties. The physical
properties of a substance generally depend on th	e spacing between the particles (atoms,
molecules, ions) that make up the substance and	the forces of attraction among them.
Learning Objective	Reference
(LO) 2.1. Students can predict properties of	475
substances based on their chemical	
formulas, and provide explanations of their	
properties based on particle views. [See SP	
6.4, 7.1]	

(LO) 2.2. The student is able to explain the	816-818; 834, Concept Review Question 18.4
relative strengths of acids and bases	
based on molecular structure, interparticle	
forces, and solution equilibrium. [See SP 7.2,	
connects to Big Idea 5, Big Idea 6]	
(LO) 2.3. The student is able to use aspects of	475; 525, Concept Review Questions 12.2
particulate models (i.e., particle spacing,	
motion, and forces of attraction) to reason about	
observed differences between solid and liquid	
phases and among solid and liquid materials.	
[See SP 6.4, 7.1]	
Big Idea 2: Chemical and physical properties o and the arrangement of atoms, ions, or molecu	f materials can be explained by the structure les and the forces between them.
Enduring Understanding 2.A Matter can be desc	cribed by its physical properties. The physical
properties of a substance generally depend on th	e spacing between the particles (atoms,
molecules, ions) that make up the substance and	the forces of attraction among them.
Enduring Understanding 2.A.2. The gaseous st	ate can be effectively modeled with a
mathematical equation relating various macrosco	pic properties. A gas has neither a definite
volume nor a definite shape: because the effects	of attractive forces are minimal, we usually
assume that the particles move independently.	· · · · · · · · · · · · · · · · · · ·
Essential Knowledge Component	Reference
a. Ideal gases exhibit specific mathematical	216
relationships among the number of particles	
present, the temperature, the pressure, and the	
volume.	
b. In a mixture of ideal gases, the pressure	225-226
exerted by each component (the partial	
pressure) is independent of the other	
components. Therefore, the total pressure is the	
sum of the partial pressures.	
c. Graphical representations of the relationships	211-212
between P, V, and T are useful to describe gas	
behavior.	
d. Kinetic molecular theory combined with a	231-236
qualitative use of the Maxwell-Boltzmann	
distribution provides a robust model for	
qualitative explanations of these mathematical	
relationships.	
e. Some real gases exhibit ideal or near-ideal	212-214; 241-243
behavior under typical laboratory conditions.	
Laboratory data can be used to generate or	
investigate the relationships in 2.A.2.a and to	
estimate absolute zero on the Celsius scale.	
f. All real gases are observed to deviate from	241-243
ideal behavior, particularly under conditions that	
are close to those resulting in condensation.	
Except at extremely high pressures that are not	
typically seen in the laboratory, deviations from	
ideal behavior are the result of intermolecular	
attractions among gas molecules. These forces	
are strongly distance-dependent, so they are	
most significant during collisions.	

g. Observed deviations from ideal gas behavior	241-243
can be explained through an understanding of	
the structure of atoms and molecules and their	
intermolecular interactions.	
Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecu	f materials can be explained by the structure les and the forces between them.
Enduring Understanding 2.A. Matter can be des	cribed by its physical properties. The physical
properties of a substance generally depend on th	e spacing between the particles (atoms,
molecules, ions) that make up the substance and	the forces of attraction among them.
Learning Objective	Reference
(LO) 2.4. The student is able to use KMT and	241-243; Test Bank Chapter 10, Question 10-1
concepts of intermolecular forces to make	
predictions about the macroscopic properties of	
gases, including both ideal and nonideal	
behaviors. [See SP 1.4, 6.4]	
(LO) 2.5. The student is able to refine multiple	210-215; 232-234; 255, Comprehensive
representations of a sample of matter in the gas	Problem 5.142
phase to accurately represent the effect of	
changes in macroscopic properties on the	
sample. [See SP 1.3, 6.4, 7.2]	
(LO) 2.6. The student can apply mathematical	217-231; 249, Skill Building Exercises 5.20
relationships or estimation to determine	
macroscopic variables for ideal gases. [See SP	
2.2, 2.3]	
Big Idea 2: Chemical and physical properties o	f materials can be explained by the structure
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.A. Matter can be des	cribed by its physical properties. The physical
Enduring Understanding 2.A. Matter can be des properties of a substance generally depend on the	cribed by its physical properties. The physical e spacing between the particles (atoms,
Enduring Understanding 2.A. Matter can be des properties of a substance generally depend on the molecules, ions) that make up the substance and	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them.
Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homo-	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties
Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homogare dependent on the concentration of the solute	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the
Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homogare dependent on the concentration of the solute particles of the solutes and solvent.	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homogare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homogare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homogare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homogare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homogare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homogare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the distinction	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, and the series of the s	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of a solution of the scale of a solution of the scale of a scale of s	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of centimeters. 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of centimeters. b. Solutions come in the form of solids, liquids, and appendix. 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of centimeters. b. Solutions come in the form of solids, liquids, and gases. 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of centimeters. b. Solutions come in the form of solids, liquids, and gases. c. For liquid solutions, the solute may be a gas, a liquid, or a solid. 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81 81 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of centimeters. b. Solutions come in the form of solids, liquids, and gases. c. For liquid solutions, the solute may be a gas, a liquid, or a solid. 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81 81 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of centimeters. b. Solutions come in the form of solids, liquids, and gases. c. For liquid solutions, the solute may be a gas, a liquid, or a solid. 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81 81 81 81 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of centimeters. b. Solutions come in the form of solids, liquids, and gases. c. For liquid solutions, the solute may be a gas, a liquid, or a solid. 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81 81 81 81 81
 Enduring Understanding 2.A. Matter can be desproperties of a substance generally depend on the molecules, ions) that make up the substance and Essential Knowledge: 2.A.3. Solutions are homorare dependent on the concentration of the solute particles of the solutes and solvent. Essential Knowledge Component a. In a solution (homogeneous mixture), the macroscopic properties do not vary throughout the sample. This is in contrast to a heterogeneous mixture in which the macroscopic properties depend upon the location in the mixture. The distinction between heterogeneous and homogeneous depends on the length scale of interest. As an example, colloids may be heterogeneous on the scale of micrometers, but homogeneous on the scale of centimeters. b. Solutions come in the form of solids, liquids, and gases. c. For liquid solutions, the solute may be a gas, a liquid, or a solid. d. Based on the reflections of their structure on the microscopic scale, liquid solutions exhibit several general properties: 	cribed by its physical properties. The physical e spacing between the particles (atoms, the forces of attraction among them. genous mixtures in which the physical properties and the strengths of all interactions among the Reference 81 81 81 81 81

using filter paper.	
2. There are no components large enough to	
scatter visible light.	
3. The components can be separated using	
processes that are a result of the intermolecular	
interactions between and among the	
components.	
e. Chromatography (paper and column)	83
separates chemical species by taking	
advantage of the differential strength of	
intermolecular interactions between and among	
the components.	
f. Distillation is used to separate chemical	83
species by taking advantage of the differential	
strength of intermolecular interactions between	
and among the components and the effects	
these interactions have on the vapor pressures	
of the components in the mixture.	
g. The formation of a solution may be an	544-549
exothermic or endothermic process, depending	
on the relative strengths of	
intermolecular/interparticle interactions before	
and after the dissolution process.	
h. Generally, when ionic compounds are	146-147
dissolved in water, the component ions are	
separated and dispersed. The presence of ions	
in a solution can be detected by use of	
conductivity measurements.	
i. Solution composition can be expressed in a	150
variety of ways; molarity is the most common	
method used in the laboratory. Molarity is	
defined as the number of moles of solute per	
liter of solution.	
j. Understanding how to prepare solutions of	152-153
specified molarity through direct mixing of the	
components, through use of volumetric	
glassware, and by dilution of a solution of	
known molarity with additional solvent is	
Important for performing laboratory work in	
chemistry.	
Big Idea 2: Chemical and physical properties o	t materials can be explained by the structure
Enduring Understanding 2 A Matter can be des	cribed by its physical properties. The physical
properties of a substance generally depend on th	e spacing between the particles (atoms.
molecules, ions) that make up the substance and	the forces of attraction among them.
Learning Objective	Reference
(LO) 2.7. The student is able to explain how	83. Problem B2.3: Lab 1: Using Paper
solutes can be separated by	Chromatography to Separate a Mixture
chromatography based on intermolecular	
interactions. [See SP 6.2]	
(LO) 2.8. The student can draw and/or interpret	152-153: 580. Comprehensive Problems 13.124
representations of solutions that	· · · · · · · · · · · · · · · · · · ·

show the interactions between the solute and	
solvent. [See SP 1.1, 1.2, 6.4]	
(LO) 2.9. The student is able to create or	150; 579, Comprehensive Problems 13.119
interpret representations that link the	
concept of molarity with particle views of	
solutions. [See SP 1.1, 1.4]	
(LO) 2.10. The student can design and/or	83; 579, Concept Review Questions 13.83; Test
interpret the results of a separation experiment	Bank, Chapter 2 Question 2-10; Lab 1: Using
(filtration, paper chromatography, column	Paper Chromatography to Separate a Mixture,
chromatography, or distillation) in terms of the	Questions 1-3
relative strength of interactions among and	
between the components. [See SP 4.2, 5.1, 6.4	
Big Idea 2: Chemical and physical properties o	f materials can be explained by the structure
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.B. Forces of attractio	n between particles (including the noble gases
and also different parts of some large molecules)	are important in determining many macroscopic
properties of a substance, including how the obse	ervable physical state changes with temperature.
Enduring Understanding 2.B.1. London dispersion	on forces are attractive forces present between
all atoms and molecules. London dispersion force	s are often the strongest net intermolecular force
between large molecules.	
Essential Knowledge Component	Reference
a. A temporary, instantaneous dipole may be	488-489
created by an uneven distribution of electrons	
around the nucleus (nuclei) of an atom	
(molecule).	
b. London dispersion forces arise due to the	488-489
Coulombic interaction of the temporary dipole	
with the electron distribution in neighboring	
atoms and molecules.	
c. Dispersion forces increase with contact area	488-489
between molecules and with increasing	
polarizability of the molecules. The polarizability	
of a molecule increases with the number of	
electrons in the molecule, and is enhanced by	
the presence of pi bonding.	
Big Idea 2: Chemical and physical properties o	f materials can be explained by the structure
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.B. Forces of attractio	n between particles (including the noble gases
and also different parts of some large molecules)	are important in determining many macroscopic
properties of a substance, including how the obse	ervable physical state changes with temperature.
Learning Objective	Reference
(LO) 2.1 Students can predict properties of	488-489
substances based on their chemical	
formulas, and provide explanations of their	
properties based on particle views. [See SP	
6.4, 7.1]	
(LO) 2.2 The student is able to explain the	488-489; p. 841, Comprehensive Problems
relative strengths of acids and bases based on	18 186
male autor atructure interneutials foress and	10.100
molecular structure, interparticle forces, and	
solution equilibrium. [See SP 7.2]	
(LO) 2.11. The student is able to explain the	488-489; 527, Skill Building Exercises 12.53

properties of samples consisting of particles		
with no permanent dipole on the basis of		
London dispersion forces [See SP 6.2, 6.4]		
Big Idea 2: Chemical and physical properties of	f materials can be explained by the structure	
and the arrangement of atoms, ions, or molecu	les and the forces between them.	
Enduring Understanding 2.B. Forces of attractio	n between particles (including the noble gases	
and also different parts of some large molecules)	are important in determining many macroscopic	
properties of a substance, including how the obse	ervable physical state changes with temperature.	
Enduring Understanding 2.8.2. Dipole forces result from the attraction among the positive ends		
and negative ends of polar molecules. Hydrogen	bonding is a strong type of dipole-dipole force	
that exists when very electronegative atoms (N, C	, and F) are involved.	
Essential Knowledge Component	Reference	
a. Molecules with dipole moments experience	484-489	
Coulombic interactions that result in a net		
attractive interaction when they are near each		
other.		
1. Intermolecular dipole-dipole forces are		
weaker than ionic forces or covalent bonds.		
2. Interactions between polar molecules are		
typically greater than between nonpolar		
molecules of comparable size because these		
interactions act in addition to London dispersion		
forces.		
3. Dipole-dipole attractions can be represented		
by diagrams of attraction between the positive		
and negative ends of polar molecules trying to		
maximize attractions and minimize repulsions in		
the liquid or solid state.		
4. Dipole-induced dipole interactions are		
present between a polar and nonpolar		
molecule. The strength of these forces		
increases with the magnitude of the dipole of		
the polar molecule and with the polarizability of		
the nonpolar molecule.		
b. Hydrogen bonding is a relatively strong type	486-487	
of intermolecular interaction that exists when		
hydrogen atoms that are covalently bonded to		
the highly electronegative atoms (N, O, and F)		
are also attracted to the negative end of a		
dipole formed by the electronegative atom (N,		
O, and F) in a different molecule, or a different		
part of the same molecule. When hydrogen		
bonding is present, even small molecules may		
have strong intermolecular attractions.		
c. Hydrogen bonding between molecules, or	486-487	
between different parts of a single molecule,		
may be represented by diagrams of molecules		
with hydrogen bonding and indications of		
location of hydrogen bonding.	405	
a. Ionic interactions with dipoles are important	485	
In the solubility of ionic compounds in polar		
solvents.		

Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them.

Enduring Understanding 2.B. Forces of attraction between particles (including the noble gases and also different parts of some large molecules) are important in determining many macroscopic properties of a substance, including how the observable physical state changes with temperature.

Learning Objective	Reference
(LO) 2.12. The student can qualitatively analyze	241-244; 251, Skill Building Exercises 5.84
data regarding real gases to identify deviations	
from ideal behavior and relate these to	
molecular interactions.	
[See SP 5.1, 6.5, connects to 2.A.2]	
(LO) 2.13. The student is able to describe the	484-489; 527, Concept Review Questions 12.33
relationships between the structural features of	
polar molecules and the forces of attraction	
between the particles.	
[See SP 1.4, 6.4]	
(LO) 2.14. The student is able to apply	484-489; 576, Skill Building Exercises 13.7; Test
Coulomb's law qualitatively (including using	Bank Chapter 9, Question 9-10
representations) to describe the interactions of	
ions, and the attractions between ions and	
solvents to explain the factors that contribute to	
the solubility of ionic compounds. [See SP 1.4,	
6.4]	
Big Idea 2: Chemical and physical properties o	f materials can be explained by the structure
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.B. Forces of attractio	n between particles (including the noble gases
and also different parts of some large molecules)	are important in determining many macroscopic
properties of a substance, including how the obse	ervable physical state changes with temperature.
Enduring Understanding 2.B.3. Intermolecular for	prces play a key role in determining the
properties of substances, including biological stru	ictures and interactions.
Essential Knowledge Component	Reference
a. Many properties of liquids and solids are	490-493
determined by the strengths and types of	
intermolecular forces present.	
1. Boiling point	
2. Surface tension	
3. Capillary action	
4. Vapor pressure	
b. Substances with similar intermolecular	534-535
interactions tend to be miscible or soluble in	
one another.	
c. The presence of intermolecular forces among	241-244
gaseous particles, including noble gases, leads	
to deviations from ideal behavior, and it can	
lead to condensation at sufficiently low	
temperatures and/or sufficiently high pressures.	
d. Graphs of the pressure-volume relationship	241
for real gases can demonstrate the deviation	
from ideal behavior; these deviations can be	
interpreted in terms of the presence and	
strengths of intermolecular forces.	
e. The structure and function of many biological	539-344; 730-731

systems depend on the strength and nature of	
the various Coulombic forces.	
1. Substrate interactions with the active sites in	
enzyme catalysis	
2. Hydrophilic and hydrophobic regions in	
proteins that determine three-dimensional	
structure in water solutions	
and the arrangement of atoms, ions, or molec	of materials can be explained by the structure ules and the forces between them.
Enduring Understanding 2.B. Forces of attraction	on between particles (including the noble gases
and also different parts of some large molecules) are important in determining many macroscopic
properties of a substance, including how the obs	ervable physical state changes with temperature.
Learning Objective	Reference
(LO) 2.15. The student is able to explain	534-535: 580. Comprehensive Problems
observations regarding the solubility of ionic	13.124
solids and molecules in water and other	
solvents on the basis of particle views that	
include intermolecular interactions and	
entropic effects. [See SP 1.4, 6.2, connects to	
5.E.1]	
(LO) 2.16. The student is able to explain the	539-544: 526. Concept Review Questions
properties (phase, vapor pressure, viscosity,	12.14
etc.) of small and large molecular compounds	
in terms of the strengths and types of	
intermolecular forces. [See SP 6.2]	
Big Idea 2: Chemical and physical properties	of materials can be explained by the structure
and the arrangement of atoms, ions, or molec	ules and the forces between them.
Enduring Understanding 2.C. The strong electr	ostatic forces of attraction holding atoms together
in a unit are called chemical bonds.	
Enduring Understanding 2.C.1. In covalent bon	ding, electrons are shared between the nuclei of
two atoms to form a molecule or polyatomic ion.	Electronegativity differences between the two
atoms account for the distribution of the shared	electrons and the polarity of the bond.
Essential Knowledge Component	Reference
a. Electronegativity is the ability of an atom in a	390
molecule to attract shared electrons to it.	
b. Electronegativity values for the	391
representative elements increase going from	
left to right across a period and decrease going	
down a group. These trends can be understood	
qualitatively through the electronic structure of	
the atoms, the shell model, and Coulomb's law.	
c. Two or more valence electrons shared	392
between atoms of identical electronegativity	
constitute a nonpolar covalent bond.	
d. However, bonds between carbon and	379
hydrogen are often considered to be nonpolar	
even though carbon is slightly more	
electronegative than hydrogen. The formation	
electronegative than hydrogen. The formation of a nonpolar covalent bond can be	
electronegative than hydrogen. The formation of a nonpolar covalent bond can be represented graphically as a plot of potential	
electronegative than hydrogen. The formation of a nonpolar covalent bond can be represented graphically as a plot of potential energy vs. distance for the interaction of two	

as an example.	
1. The relative strengths of attractive and	
repulsive forces as a function of distance	
determine the shape of the graph.	
2. The bond length is the distance between the	
bonded atoms' nuclei, and is the distance of	
minimum potential energy where the attractive	
and repulsive forces are balanced.	
3. The bond energy is the energy required for	
the dissociation of the bond. This is the net	
energy of stabilization of the bond compared to	
the two separated atoms. Typically, bond	
energy is given on a per mole basis.	
e. Two or more valence electrons shared	392-393
between atoms of unequal electronegativity	
constitute a polar covalent bond.	
1. The difference in electronegativity for the two	
atoms involved in a polar covalent bond is not	
equal to zero.	
2. The atom with a higher electronegativity will	
develop a partial negative charge relative to the	
other atom in the bond. For diatomic molecules,	
the partial negative charge on the more	
electronegative atom is equal in magnitude to	
the partial positive charge on the less	
electronegative atom.	
3. Greater differences in electronegativity lead	
to greater partial charges, and consequently	
greater bond dipoles.	
4. The sum of partial charges in any molecule or	
ion must be equal to the overall charge on the	
species.	
f. All bonds have some ionic character, and the	390-393
difference between ionic and covalent bonding	
is not distinct but rather a continuum. The	
difference in electronegativity is not the only	
factor in determining if a bond is designated	
ionic or covalent. Generally, bonds between a	
metal and nonmetal are ionic, and between two	
nonmetals the bonds are covalent. Examination	
of the properties of a compound is the best way	
to determine the type of bonding.	
Big Idea 2: Chemical and physical properties o	f materials can be explained by the structure
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.C. The strong electro	static forces of attraction holding atoms together
In a unit are called chemical bonds.	Deference
(LO) 2.1 Students can predict properties of	392-393
substances based on their chemical	
iormulas, and provide explanations of their	
properties based on particle views. [See SP	
0.4, /.1]	

(LO) 2.2 The student is able to explain the	392-393; 402 Skill Building Exercise 9.66
relative strengths of acids and bases based on	
molecular structure, interparticle forces, and	
solution equilibrium. [See SP 7.2]	
(LO) 2.17. The student can predict the type of	390-393; 402 Skill Building Exercise 9.65
bonding present between two atoms in a binary	
compound based on position in the periodic	
table and the electronegativity of the elements.	
[See SP 6.4]	
(LO) 2.18. The student is able to rank and justify	390-393; 402 Skill Building Exercise 9.67
the ranking of bond polarity on the basis of the	
locations of the bonded atoms in the periodic	
table. [See SP 6.1]	
Big Idea 2: Chemical and physical properties of	f materials can be explained by the structure
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.C. The strong electron	ostatic forces of attraction holding atoms together
in a unit are called chemical bonds.	
Essential Knowledge 2 C 2, Jonic bonding resul	ts from the net attraction between oppositely
charged ions, closely packed together in a crysta	l lattice.
Essential Knowledge Component	Reference
a. The cations and anions in an ionic crystal are	504-505
arranged in a systematic, periodic 3-D array that	
maximizes the attractive forces among cations	
and anions while minimizing the repulsive	
forces.	
b. Coulomb's law describes the force of	64-65
attraction between the cations and anions in an	
attraction between the cations and anions in an ionic crystal.	
attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the	
attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to	
attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions.	
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to 	
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers. 	
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei) smaller ions lead to stronger 	
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. 	
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of the stronger interactions. 	f materials can be explained by the structure
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecular interactions. 	f materials can be explained by the structure
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecular interactions and understanding 2.C. The strong elect 	of materials can be explained by the structure files and the forces between them.
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecular to get the an unit are called chemical bonds. 	f materials can be explained by the structure les and the forces between them. rostatic forces of attraction holding atoms
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecular to gether in a unit are called chemical bonds. Learning Objective 	f materials can be explained by the structure les and the forces between them. rostatic forces of attraction holding atoms
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecular together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual 	of materials can be explained by the structure alles and the forces between them. Fostatic forces of attraction holding atoms Reference 504-505: 400 Concept Review Questions 9.17
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecutions in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that 	of materials can be explained by the structure restand the forces between them. Fostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecute together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that connect the microscopic structure to 	of materials can be explained by the structure alles and the forces between them. Fostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecute together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that connect the microscopic structure to macroscopic properties and/or use 	of materials can be explained by the structure alles and the forces between them. Fostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecute together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that connect the microscopic structure to macroscopic properties, and/or use 	of materials can be explained by the structure lies and the forces between them. Frostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong elect together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that connect the microscopic structure to macroscopic properties, and/or use representations to connect the microscopic structure to macroscopic properties. 	of materials can be explained by the structure alles and the forces between them. Frostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecute together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that connect the microscopic structure to macroscopic properties, and/or use representations to connect the microscopic structure to macroscopic properties (e.g., boiling point solubility bardness brittleness) 	of materials can be explained by the structure alles and the forces between them. Fostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecute together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that connect the microscopic structure to macroscopic properties, and/or use representations to connect the microscopic structure to macroscopic properties (e.g., boiling point, solubility, hardness, brittleness, low volatility, lack of malleability, ductility, or 	of materials can be explained by the structure reles and the forces between them. Fostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17
attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecu Enduring Understanding 2.C. The strong elect together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that connect the microscopic structure to macroscopic properties, and/or use representations to connect the microscopic structure to macroscopic properties (e.g., boiling point, solubility, hardness, brittleness, low volatility, lack of malleability, ductility, or conductivity) [See SP 11 14, 71 connects to	of materials can be explained by the structure alles and the forces between them. Fostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17
 attraction between the cations and anions in an ionic crystal. 1. Because the force is proportional to the charge on each ion, larger charges lead to stronger interactions. 2. Because the force is inversely proportional to the square of the distance between the centers of the ions (nuclei), smaller ions lead to stronger interactions. Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecute together in a unit are called chemical bonds. Learning Objective (LO) 2.19. The student can create visual representations of ionic substances that connect the microscopic structure to macroscopic properties, and/or use representations to connect the microscopic structure to macroscopic properties (e.g., boiling point, solubility, hardness, brittleness, low volatility, lack of malleability, ductility, or conductivity). [See SP 1.1, 1.4, 7.1, connects to 	of materials can be explained by the structure alles and the forces between them. Fostatic forces of attraction holding atoms Reference 504-505; 400 Concept Review Questions 9.17

Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them		
Enduring Understanding 2 C. The strong electric	estatic forces of attraction holding atoms together	
in a unit are called chemical bonds.	static forces of attraction notding atoms together	
Enduring Understanding 2.C.3. Metallic bondin	a describes an array of positively charged metal	
cores surrounded by a sea of mobile valence ele	ctrons.	
Essential Knowledge Component	Essential Knowledge Component Reference	
a. The valence electrons from the metal atoms	396-397	
are considered to be delocalized and not		
associated with any individual atom.		
b. Metallic bonding can be represented as an	370-371	
array of positive metal ions with valence		
electrons drawn among them, as if the electrons		
were moving (i.e., a sea of electrons).		
c. The electron sea model can be used to	396-397	
explain several properties of metals, including		
electrical conductivity, malleability, ductility, and		
low volatility.		
d. The number of valence electrons involved in	394-395	
metallic bonding, via the shell model, can be		
used to understand patterns in these		
properties, and can be related to the shell		
model to reinforce the connections between		
metallic bonding and other forms of bonding		
Big Idea 2: Chemical and physical properties of	f materials can be explained by the structure	
and the arrangement of atoms ions or molecules and the forces between them		
and the arrangement of atoms, ions, or molecu	les and the forces between them.	
and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electron	Iles and the forces between them.	
and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronic in a unit are called chemical bonds.	Iles and the forces between them. Ostatic forces of attraction holding atoms together	
and the arrangement of atoms, ions, or molecular Enduring Understanding 2.C. The strong electronic in a unit are called chemical bonds. Learning Objective	Iles and the forces between them. Ostatic forces of attraction holding atoms together Reference	
and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronic in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how	Iles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions	
and the arrangement of atoms, ions, or molecular Enduring Understanding 2.C. The strong electronic in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized	Iles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70	
and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic	Reference 396-397; 402, Concept Review Questions	
and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronic in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity,	Iles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70	
and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronic in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the	Iles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70	
and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronic in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1].	Iles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70	
and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronin a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.]	Iles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70	
and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electronin a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of	Alles and the forces between them. Distatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70	
and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electronin a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecule	Alles and the forces between them. Distatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure alles and the forces between them.	
and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronin a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molect	Iles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure Iles and the forces between them. ostatic forces of attraction holding atoms together	
and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds.	alles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure and the forces between them. ostatic forces of attraction holding atoms together	
and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electronin a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electronin in a unit are called chemical bonds. Enduring Understanding 2.C.4. The localized electronical electro	alles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts	
 and the arrangement of atoms, ions, or molecular Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of atoms, ions, or molecular for a unit are called chemical bonds. Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. 	alles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure alles and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model.	
 and the arrangement of atoms, ions, or molecular in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of atoms, ions, or molecular in a unit are called chemical bonds. Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. 	Alles and the forces between them. Distatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure alles and the forces between them. Distatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model. Reference	
 and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronin a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecular for a unit are called chemical bonds. Enduring Understanding 2.C. The strong electronin a unit are called chemical bonds. Enduring Understanding 2.C.4. The localized electronis and the arrangement of atoms. 	alles and the forces between them. ostatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure alles and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model. Reference 371	
 and the arrangement of atoms, ions, or molect Enduring Understanding 2.C. The strong electronin a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molected and the arrangement of atoms, ions, or molected in a unit are called chemical bonds. Enduring Understanding 2.C.4. The localized electronical and the standing at the st	alles and the forces between them. pstatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure alles and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model. Reference 371	
and the arrangement of atoms, ions, or molecular Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecular Enduring Understanding 2.C. The strong electror in a unit are called chemical bonds. Enduring Understanding 2.C.4. The localized ele molecular geometry using Lewis diagrams and the Essential Knowledge Component a. Lewis diagrams can be constructed according to a well-established set of principles. b. The VSEPR model uses the Coulombic	Ales and the forces between them. pstatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure ales and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model. Reference 371 417-427	
and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Enduring Understanding 2.C.4. The localized ele molecular geometry using Lewis diagrams and the Essential Knowledge Component a. Lewis diagrams can be constructed according to a well-established set of principles. b. The VSEPR model uses the Coulombic repulsion between electrons as a basis for	Ales and the forces between them. pstatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure alles and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model. Reference 371 417-427	
and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Enduring Understanding 2.C.4. The localized ele molecular geometry using Lewis diagrams and the Essential Knowledge Component a. Lewis diagrams can be constructed according to a well-established set of principles. b. The VSEPR model uses the Coulombic repulsion between electrons as a basis for predicting the arrangement of electron pairs	Ales and the forces between them. pstatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure ales and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model. Reference 371 417-427	
and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecule Enduring Understanding 2.C. The strong electron in a unit are called chemical bonds. Enduring Understanding 2.C.4. The localized elemolecular geometry using Lewis diagrams and the Essential Knowledge Component a. Lewis diagrams can be constructed according to a well-established set of principles. b. The VSEPR model uses the Coulombic repulsion between electrons as a basis for predicting the arrangement of electron pairs around a central atom.	Alles and the forces between them. pstatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure alles and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model. Reference 371 417-427	
and the arrangement of atoms, ions, or molecular geometry using 2.C. The strong electron in a unit are called chemical bonds. Learning Objective (LO) 2.20. The student is able to explain how a bonding model involving delocalized electrons is consistent with macroscopic properties of metals (e.g., conductivity, malleability, ductility, and low volatility) and the shell model of the atom. [See SP 6.2, 7.1, connects to 2.D.2.] Big Idea 2: Chemical and physical properties of and the arrangement of atoms, ions, or molecular in a unit are called chemical bonds. Enduring Understanding 2.C. The strong electron is diagrams and the strong structed according to a well-established set of principles. b. The VSEPR model uses the Coulombic repulsion between electrons as a basis for predicting the arrangement of equivalent c. In cases where more than one equivalent	Ales and the forces between them. pstatic forces of attraction holding atoms together Reference 396-397; 402, Concept Review Questions 9.70 of materials can be explained by the structure alles and the forces between them. ostatic forces of attraction holding atoms together ectron bonding model describes and predicts e VSEPR model. Reference 371 417-427 409-411	

must be included as a refinement to the Lewis	
structure approach in order to provide	
qualitatively accurate predictions of molecular	
structure and properties (in some cases).	
d. Formal charge can be used as a criterion for	411-412
determining which of several possible valid	
Lewis diagrams provides the best model for	
predicting molecular structure and properties.	
e. The combination of Lewis diagrams with the	417-427
VSEPR model provides a powerful model for	
predicting structural properties of many	
covalently bonded molecules and polyatomic	
ions, including the following:	
1. Molecular geometry	
2. Bond angles	
3. Relative bond energies based on bond order	
4. Relative bond lengths (multiple bonds, effects	
of atomic radius)	
5. Presence of a dipole moment	
f. As with any model, there are limitations to the	413-414
use of the Lewis structure model, particularly in	
cases with an odd number of valence electrons.	
Recognizing that Lewis diagrams have	
limitations is of significance.	
g. Organic chemists commonly use the terms	443-455
"hybridization" and "hybrid orbital" to describe	
the arrangement of electrons around a central	
atom. When there is a bond angle of 180°, the	
central atom is said to be sp hybridized; for	
120°, the central atom is sp2 hybridized; and for	
109°, the central atom is sp3 hybridized.	
Students should be aware of this terminology,	
and be able to use it. When an atom has more	
than four pairs of electrons surrounding the	
central atom, students are only responsible for	
the shape of the resulting molecule.	
n. Bond formation is associated with overlap	451-455
between atomic orbitals. In multiple bonds, such	
overlap leads to the formation of both sigma	
and pi bonds. The overlap is stronger in sigma	
than pi bonds, which is reliected in signa bonds	
presence of a pi bond also provents the rotation	
of the bond, and leads to structural isomore. In	
systems such as henzene where atomic p-	
orbitals overlap strongly with more than one	
other n-orbital extended ni bonding exists	
which is delocalized across more than two	
nuclei. Such descriptions provide an alternative	
description to resonance in Lewis structures Δ	
useful example of delocalized pi bonding is	
molecular solids that conduct electricity. The	

discovery of such materials at the end of the	
1970s overturned a long-standing assumption in	
chemistry that molecular solids will always be	
insulators	
i Molecular orbital theory describes covalent	455-462
bonding in a manner that can capture a wider	100 102
array of systems and phenomena than the	
Lewis or VSEPR models. Molecular orbital	
diagrams, showing the correlation between	
atomic and molecular orbitals, are a useful	
qualitative tool related to melocular orbital	
theory	
Big Idea 2: Chamical and physical properties	of materials can be explained by the structure
and the arrangement of stoms lions or moles	los and the forces between them
Enduring Understanding 2.C. The strong electr	dies and the forces between them.
in a unit are called chemical bonds.	ostatic forces of attraction holding atoms together
Learning Objective	Reference
(LO) 2.21. The student is able to use Lewis	444-451; 441, Comprehensive Problems 10.92
diagrams and VSEPR to predict the geometry	
of molecules, identify hybridization, and make	
predictions about polarity. [See SP 1.4]	
Big Idea 2: Chemical and physical properties	of materials can be explained by the structure
and the arrangement of atoms, ions, or molec	ules and the forces between them.
Enduring Understanding 2.D. The type of bond	ing in the solid state can be deduced from the
properties of the solid state.	
Enduring Understanding 2.D.1. Ionic solids have	e high melting points, are brittle, and conduct
electricity only when molten or in solution.	
electricity only when molten or in solution.	Reference
electricity only when molten or in solution. Essential Knowledge Component a Many properties of ionic solids are related to	Reference
electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure	Reference 146-147; 503-506
electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. Lonic solids generally have low vapor pressure.	Reference 146-147; 503-506
electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of	Reference 146-147; 503-506
electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and pegative ions arranged in a regular	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three dimensional array. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Jonic solids tond to be brittle due to the 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to free to the solids are melted. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to make 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the constrained interactions of provide the second of the s	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these achieves with ear due to a solution of the provision. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these solutions will conduct electricity. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these solutions will conduct electricity. Dissolving a nonconducting solid in water, and elements of the separate ions are former to move in the separate ion solid in water, and elements of the separate ion in the separate ion is in the separate ion in the separate ion in the separate ion in the separate ion in the se	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these solutions will conduct electricity. Dissolving a nonconducting solid in water, and observing the solution's ability to conduct 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these solutions will conduct electricity. Dissolving a nonconducting solid in water, and observing the solution's ability to conduct electricity, is one way to identify an ionic solid. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these solutions will conduct electricity. Dissolving a nonconducting solid in water, and observing the solution's ability to conduct electricity, is one way to identify an ionic solid. 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these solutions will conduct electricity. Dissolving a nonconducting solid in water, and observing the solution's ability to conduct electricity, is one way to identify an ionic solid. 5. Ionic compounds tend not to dissolve in nonpolar solvents because the attractions 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these solutions will conduct electricity. Dissolving a nonconducting solid in water, and observing the solution's ability to conduct electricity, is one way to identify an ionic solid. 5. Ionic compounds tend not to dissolve in nonpolar solvents because the attractions among the ions are much stronger than the 	Reference 146-147; 503-506
 electricity only when molten or in solution. Essential Knowledge Component a. Many properties of ionic solids are related to their structure. 1. Ionic solids generally have low vapor pressure due to the strong Coulombic interactions of positive and negative ions arranged in a regular three-dimensional array. 2. Ionic solids tend to be brittle due to the repulsion of like charges caused when one layer slides across another layer. 3. Ionic solids do not conduct electricity. However, when ionic solids are melted, they do conduct electricity because the ions are free to move. 4. When ionic solids are dissolved in water, the separated ions are free to move; therefore, these solutions will conduct electricity. Dissolving a nonconducting solid in water, and observing the solution's ability to conduct electricity, is one way to identify an ionic solid. 5. Ionic compounds tend not to dissolve in nonpolar solvents because the attractions and the attractions among the ions are much stronger than the attractions among the separated ions and the 	Reference 146-147; 503-506

b. The attractive force between any two ions is	64-66
governed by Coulomb's law: The force is	
directly proportional to the charge of each ion	
and inversely proportional to the square of the	
distance between the centers of the ions	
1 For ions of a given charge the smaller the	
ions and thus the smaller the distance between	
ion centers, the stronger the Coulombic force of	
attraction and the higher the molting point	
2 long with higher charges load to higher	
2. IONS WITH HIGHER CHARGES lead to Higher molting	
Coulombic lorces, and therefore higher melting	
points.	
Big Idea 2: Chemical and physical properties of	of materials can be explained by the structure
and the arrangement of atoms, lons, or molect	Jies and the forces between them.
properties of the solid state.	ing in the solid state can be deduced from the
Learning Objective	Reference
(I O) 2.1 Students can predict properties of	146-148: 502-507: 400 Concept Review
substances based on their chemical formulas	Questions 9 17
and provide explanations of their properties	
based on particle views [SP 6.4.7.1]	
10.2.2 The student is able to explain the	64.66: 808. Follow Lin Drobloms 18.64
(LO) 2.2 The student is able to explain the	64-66, 808, Follow Op Problems 18.6A
relative strengths of actos and bases based of	
molecular structure, interparticle forces, and	
solution equilibrium. [See SP 7.2]	
(LO) 2.22. The student is able to design or	146-14/; 503-506; Test Bank Chapter 9,
evaluate a plan to collect and/or	Question 9-4
interpret data needed to deduce the type of	
bonding in a sample of a solid. [See SP 4.2,	
6.4]	
(LO) 2.23. The student can create a	64-66; Test Bank Chapter 9, Question 9-9
representation of an ionic solid that shows	
essential characteristics of the structure and	
interactions present in the substance. [See SP	
1.1]	
(LO) 2.24. The student is able to explain a	146-147; 503-506; 401, Problems in Context
representation that connects properties of an	9.32
ionic solid to its structural attributes and to the	
interactions present at the atomic level. [See	
SP 1.1, 6.2, 7.1]	
Big Idea 2: Chemical and physical properties of	of materials can be explained by the structure
and the arrangement of atoms, ions, or moleci	ules and the forces between them.
Enduring Understanding 2.D. The type of bond	ing in the solid state can be deduced from the
properties of the solid state.	J.
Enduring Understanding 2.D.2. Metallic solids a	are good conductors of heat and electricity, have a
wide range of melting points, and are shiny, mall	eable, ductile, and readily alloyed.
Essential Knowledge Component	Reference
a. A metallic solid can be represented as	395-397
positive kernels (or cores) consisting of the	
nucleus and inner electrons of each atom	
surrounded by a sea of mobile valence	
electrons	

interactions present in the substance.	
[3ee 3F 1.1]	WobQuest 6
(LO) 2.20. The student is able to explain a	WebQuest o
motallic solid to its structural attributos and to	
the interactions present at the atomic level	
[See SF 1.1, 0.2, 7.1]	f motoviale can be explained by the atweeture
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.D. The type of bondi	ng in the solid state can be deduced from the
properties of the solid state.	
Enduring Understanding 2.D.3. Covalent netwo	rk solids have properties that reflect their
underlying 2-D or 3-D networks of covalent bonds	s. Covalent network solids generally have
extremely high melting points and are hard.	
Essential Knowledge Component	Reference
a. Covalent network solids consist of atoms that	379-383
are covalently bonded together into a two-	
dimensional or three-dimensional network.	
1. Covalent network solids are only formed from	
nonmetals: elemental (diamond, graphite) or	
two nonmetals (silicon dioxide and silicon	
carbide).	
2. The properties of covalent network solids are	
a reflection of their structure.	
3. Covalent network solids have high melting	
points because all of the atoms are covalently	
bonded.	
4. Three-dimensional covalent networks tend to	
be rigid and hard because the covalent bond	
angles are fixed.	
5. Generally, covalent network solids form in the	
carbon group because of their ability to form	
four covalent bonds.	
b. Graphite is an allotrope of carbon that forms	506
sheets of two-dimensional networks.	
1. Graphite has a high melting point because the	
covalent bonds between the carbon atoms	
making up each layer are relatively strong.	
2. Graphite is soft because adjacent layers can	
slide past each other relatively easily; the major	
forces of attraction between the layers are	
London dispersion forces.	
c. Silicon is a covalent network solid and a	509-514
semiconductor.	
1. Silicon forms a three-dimensional network	
similar in geometry to a diamond.	
2. Silicon's conductivity increases as	
temperature increases.	
3. Periodicity can be used to understand why	
doping with an element with one extra valence	
electron converts silicon into an n-type	
semiconducting (negative charge carrying)	

material, while doping with an element with one	
less valence electron converts silicon into a p-	
type semiconducting (positive charge carrying)	
material. Junctions between n-doped and p-	
doped materials can be used to control electron	
flow, and thereby are the basis of modern	
electronics.	
Big Idea 2: Chemical and physical properties of	f materials can be explained by the structure
and the arrangement of atoms, ions, or molecu	les and the forces between them.
Enduring Understanding 2.D. The type of bondi	ng in the solid state can be deduced from the
properties of the solid state.	
Learning Objective	Reference
(LO) 2.29. The student can create a	383; Test Bank Chapter 12, Question 12-11
representation of a covalent solid that shows	
essential characteristics of the structure and	
interactions present in the substance. [See SP	
1.1]	
(LO) 2.30. The student is able to explain a	383; 403, Comprehensive Problems 9.82
representation that connects properties of a	
covalent solid to its structural attributes and to	
the interactions present at the atomic level.	
[See SP 1.1, 6.2, 7.1]	
Big Idea 2: Chemical and physical properties of	f materials can be explained by the structure
and the errongement of storms light or molecu	los and the forces between them
Enduring Understanding 2.D. The type of bond	ing in the solid state can be deduced from the
Enduring Understanding 2.D. The type of bond properties of the solid state.	ing in the solid state can be deduced from the
Enduring Understanding 2.D. The type of bonc properties of the solid state. Enduring Understanding 2.D.4. Molecular solids	ing in the solid state can be deduced from the with low molecular weight usually have low
Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e	with low molecular weight usually have low lectricity as solids, in solution, or when molten.
Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component	with low molecular weight usually have low lectricity as solids, in solution, or when molten.
Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals,	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383
Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383
Enduring Understanding 2.D. The type of bonc properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals.	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383
 Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383
 Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383
 Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct expected to each other through relatively weak intermolecular forces. 1. Molecular solids are not expected to conduct 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 Enduring Understanding 2.D. The type of bonc properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. 1. Molecular solids are not expected to conduct electricity because their electrons are tightly 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 Enduring Understanding 2.D. The type of bonc properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. 1. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 and the arrangement of atoms, fors, of molect Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each constituent molecule. 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 and the arrangement of atoms, fors, of molect Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. b. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each constituent molecule. 2. Molecular solids generally have a low melting 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 Enduring Understanding 2.D. The type of bonc properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. b. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each constituent molecule. 2. Molecular solids generally have a low melting point because of the relatively weak 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 Enduring Understanding 2.D. The type of bonc properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct expected to each other through relatively weak intermolecular forces. 1. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each constituent molecule. 2. Molecular solids generally have a low melting point because of the relatively weak intermolecular forces present between the 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 and the arrangement of atoms, fors, of molect Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. 1. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each constituent molecule. 2. Molecular solids generally have a low melting point because of the relatively weak intermolecular forces present between the molecules. 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 Enduring Understanding 2.D. The type of bonc properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. 1. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each constituent molecule. 2. Molecular solids generally have a low melting point because of the relatively weak intermolecular forces present between the molecules. 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 and the arrangement of atoms, fors, of molect Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. b. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each constituent molecule. 2. Molecular solids generally have a low melting point because of the relatively weak intermolecular forces present between the molecules. 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383
 and the arrangement of atoms, fors, of molect Enduring Understanding 2.D. The type of bond properties of the solid state. Enduring Understanding 2.D.4. Molecular solids melting points and are not expected to conduct e Essential Knowledge Component a. Molecular solids consist of nonmetals, diatomic elements, or compounds formed from two or more nonmetals. b. Molecular solids are composed of distinct, individual units of covalently bonded molecules attracted to each other through relatively weak intermolecular forces. 1. Molecular solids are not expected to conduct electricity because their electrons are tightly held within the covalent bonds of each constituent molecule. 2. Molecular solids generally have a low melting point because of the relatively weak intermolecular forces present between the molecules. 3. Molecular solids are sometimes composed of very large molecules, or polymers, with important commercial and biological 	ing in the solid state can be deduced from the with low molecular weight usually have low lectricity as solids, in solution, or when molten. Reference 383 383

Big Idea 2: Chemical and physical properties of materials can be explained by the structure and the arrangement of atoms, ions, or molecules and the forces between them.

Enduring Understanding 2.D. The type of bonding in the solid state can be deduced from the properties of the solid state.

Learning Objective	Reference
(LO) 2.31. The student can create a	383; Test Bank Chapter 14, Question 14-7
representation of a molecular solid that shows	
essential characteristics of the structure and	
interactions present in the substance. [See SP	
1.1]	
(LO) 2.32. The student is able to explain a	Test Bank Question 14-7, Chapter 14, 2.D.4.b
representation that connects properties of a	
molecular solid to its structural attributes and to	
the interactions present at the atomic level.	
[See SP 1.1, 6.2, 7.1]	

Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons		
Enduring Understanding 3.A. Chemical changes	are represented by a balanced chemical	
equation that identifies the ratios with which reac	tants react and products form.	
Enduring Understanding 3.A.1. A chemical change may be represented by a molecular, ionic, or		
net ionic equation.		
Essential Knowledge Component	Reference	
a. Chemical equations represent chemical	111-114	
changes, and therefore must contain equal		
numbers of atoms of every element on each		
side to be "balanced."		
b. Depending on the context in which it is used,	155-157	
there are different forms of the balanced		
chemical equations that are used by chemists. It		
is important not only to write a balanced		
molecular, ionic, or net ionic reaction equation,		
but also to have an understanding of the		
circumstances under which any of them might		
be the most useful form.		
c. The balanced chemical equation for a	158	
reaction is capable of representing chemistry at		
any level, and thus it is important that it can be		
translated into a symbolic depiction at the		
particulate level, where much of the reasoning		
of chemistry occurs.		
d. Because chemistry is ultimately an	111-116	
experimental science, it is important that		
students be able to describe chemical reactions		
observed in a variety of laboratory contexts.		
Big Idea 3: Changes in matter involve the rearr	angement and/or reorganization of atoms	
and/or the transfer of electrons		
Enduring Understanding 3.A. Chemical changes	are represented by a balanced chemical	
equation that identifies the ratios with which reac	tants react and products form.	
Learning Objective	Reference	
(LO) 3.1. Students can translate among	111-116	
macroscopic observations of change, chemical		
equations, and particle views. [See SP 1.5, 7.1]		
(LO) 3.2 The student can translate an observed	111-116; 197, Concept Review Questions 4.40	
chemical change into a balanced chemical		
equation and justify the choice of equation type		
(molecular, ionic, or net ionic) in terms of utility		
for the given circumstances. [See SP 1.5, 7.1]		

Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.

Enduring Understanding 3.A. Chemical changes are represented by a balanced chemical equation that identifies the ratios with which reactants react and products form.

Enduring Understanding 3.A.2. Quantitative information can be derived from stoichiometric calculations that utilize the mole ratios from the balanced chemical equations. The role of stoichiometry in real-world applications is important to note, so that it does not seem to be simply an exercise done only by chemists.

Essential Knowledge Component	Reference
a. Coefficients of balanced chemical equations	116-118
contain information regarding the	
proportionality of the amounts of substances	
involved in the reaction. These values can be	
used in chemical calculations that apply the	
mole concept; the most important place for this	
type of quantitative exercise is the laboratory.	
1. Calculate amount of product expected to be	
produced in a laboratory experiment.	
Identify limiting and excess reactant;	
calculate percent and theoretical yield for a	
given laboratory experiment.	
b. The use of stoichiometry with gases also has	224-225; 228-230
the potential for laboratory experimentation,	
particularly with respect to the experimental	
determination of molar mass of a gas.	
c. Solution chemistry provides an additional	172-174
avenue for laboratory calculations of	
stoichiometry, including titrations.	
Big Idea 3: Changes in matter involve the rearr	angement and/or reorganization of atoms
and/or the transfer of electrons.	
Enduring Understanding 3.A. Chemical changes	s are represented by a balanced chemical
equation that identifies the ratios with which react	Peference
Learning Objective	Reference
(LO) 3.3. The student is able to use	116-118; 199 Problems in Context 4.73
stoicniometric calculations to predict the results	
of performing a reaction in the laboratory and/or	
to analyze deviations from the expected results.	
[See SP 2.2, 5.1]	224 225, 229 220, 400 Droblems in Context
(LO) 3.4. The student is able to relate quantities	224-225; 228-230; 199, Problems in Context
(inedsured mass of substances, volumes of	4.75
identify stoichiometric relationships for a	
reaction including situations involving limiting	
reaction, including situations involving limiting	
has not gong to completion ISon SP 2.2 E 1	
0.4]	

Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms		
and/or the transfer of electrons.		
Enduring Understanding 3.B. Chemical reactions can be classified by considering what the		
reactants are, what the products are, or how they	change from one into the other. Classes of	
chemical reactions include synthesis, decomposit	ion, acid-base, and oxidation-reduction reactions.	
Enduring Understanding 3.B.1. Synthesis reactions are those in which atoms and/or molecules		
combine to form a new compound. Decompositio	n is the reverse of synthesis, a process whereby	
molecules are decomposed, often by the use of h	eat.	
Essential Knowledge Component	Reference	
a. Synthesis or decomposition reactions can be	181-187	
used for acquisition of basic lab techniques and		
observations that help students deal with the		
abstractions of atoms and stoichiometric		
calculations.		
Big Idea 3: Changes in matter involve the rearr	angement and/or reorganization of atoms	
and/or the transfer of electrons.		
Enduring Understanding 3.B. Chemical reaction	s can be classified by considering what the	
reactants are, what the products are, or how they	change from one into the other. Classes of	
chemical reactions include synthesis, decomposit	ion, acid-base, and oxidation-reduction reactions.	
Learning Objective	Reference	
(LO) 3.1 Students can translate among	181-187; 139 Skill Building Exercises 3.80	
macroscopic observations of change, chemical		
equations, and particle views. [See SP 1.5, 7.1]		
(LO) 3.5. The student is able to design a plan in	181-187, Test Bank Chapter 2, 2-1	
order to collect data on the synthesis or		
decomposition of a compound to confirm the		
conservation of matter and the law of definite		
proportions. [See SP 2.1, 4.2, 6.4]		
(LO) 3.6. The student is able to use data from	181-187; 139 Skill Building Exercises 3.83	
synthesis or decomposition of a compound to		
confirm the conservation of matter and the law		
of definite proportions. [See SP 2.2, 6.1]		
Big Idea 3: Changes in matter involve the rearr	angement and/or reorganization of atoms	
and/or the transfer of electrons.		
Enduring Understanding 3.B. Chemical reactions	s can be classified by considering what the	
reactants are, what the products are, or how they	change from one into the other. Classes of	
chemical reactions include synthesis, decomposit	ion, acid-base, and oxidation-reduction reactions.	
Enduring Understanding 3.B.2. In a neutralizatio	n reaction, protons are transferred from an acid	
to a base.		
Essential Knowledge Component	Reference	
a. The amphoteric nature of water plays an	803-804	
important role in the chemistry of aqueous		
solutions, since water can both accept protons		
from and donate protons to dissolved species.		
b. Acid-base reactions:	803-805	
1. Only reactions in aqueous solutions are		
considered.		
2.The Brønsted-Lowry concept of acids and		
bases is the focus of the course.		
3. When an acid or base ionizes in water, the		
conjugate acid-base pairs can be identified and		

Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.Enduring Understanding 3.B. Chemical reactions can be classified by considering what the reactants are, what the products are, or how they change from one into the other. Classes of chemical reactions include synthesis, decomposition, acid-base, and oxidation-reduction reactions.
and/or the transfer of electrons. Enduring Understanding 3.B. Chemical reactions can be classified by considering what the reactants are, what the products are, or how they change from one into the other. Classes of chemical reactions include synthesis, decomposition, acid-base, and oxidation-reduction reactions.
Enduring Understanding 3.B. Chemical reactions can be classified by considering what the reactants are, what the products are, or how they change from one into the other. Classes of chemical reactions include synthesis, decomposition, acid-base, and oxidation-reduction reactions.
reactants are, what the products are, or how they change from one into the other. Classes of chemical reactions include synthesis, decomposition, acid-base, and oxidation-reduction reactions.
chemical reactions include synthesis, decomposition, acid-base, and oxidation-reduction reactions.
Learning Objective Reference
(LO) 3.7. The student is able to identify 803-805; 836, Skill Building Exercises 18.47
compounds as Brønsted-Lowry acids, bases,
and/or conjugate acid-base pairs, using proton-
transfer reactions to justify the identification.
[See SP 6.1]
Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms
and/or the transfer of electrons.
Enduring Understanding 3.B. Chemical reactions can be classified by considering what the
reactants are, what the products are, or how they change from one into the other. Classes of
chemical reactions include synthesis, decomposition, acid-base, and oxidation-reduction reactions.
Enduring Understanding 3.B.3. In oxidation-reduction (redox) reactions, there is a net transfer of
electrons. The species that loses electrons is oxidized, and the species that gains electrons is
reduced.
Essential Knowledge Component Reference
a. In a redox reaction, electrons are transferred 174-176
from the species that is oxidized to the species
that is reduced.
b. Oxidation numbers may be assigned to each 1/6-1/8
of the atoms in the reactant and products; this is
often an effective way to identify the oxidized
and reduced species in a redox reaction.
c. Balanced chemical equations for redox 940-943
tabulated half reactions
d Decempizing that a reaction is a redex. 170 190
u. Recognizing that a reaction is a redux 173-160
of this type of reaction is a laboratory exercise
where students perform redox titrations
e There are a number of important redox 1186-187
reactions in energy production processes
(combustion of hydrocarbons and metabolism
of sugars, fats, and proteins).
Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms
and/or the transfer of electrons.
Enduring Understanding 3.B. Chemical reactions can be classified by considering what the
reactants are, what the products are, or how they change from one into the other. Classes of
chemical reactions include synthesis, decomposition, acid-base, and oxidation-reduction reactions.
Learning Objective Reference
(LO) 3.8. The student is able to identify redox 174-176: 202. Comprehensive Problems 4.138
reactions and justify the identification in terms
of electron transfer. [See SP 6.1]
(LO) 3.9. The student is able to design and/or 179-180; 200, Problems in Context 4.96
interpret the results of an experiment involving
a redox titration. [See SP 4.2, 5.1]

Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms		
Enduring Understanding 2.C. Chamical and new	sical transformations may be observed in several	
Enduring Understanding 3.C. Chemical and physical transformations may be observed in several ways and typically involve a change in energy.		
Enduring Understanding 3.C.1. Production of heat or light, formation of a gas, and formation of a		
precipitate and/or a color change are possible ev	idences that a chemical change has occurred.	
Essential Knowledge Component	Reference	
a. Laboratory observations are made at the	5-6	
macroscopic level, so students must be able to		
characterize changes in matter using visual		
clues and then make representations or written		
descriptions.		
b. Distinguishing the difference between	5	
chemical and physical changes at the		
macroscopic level is a challenge; therefore, the		
ability to investigate chemical properties is		
important.		
c. In order to develop the ability to distinguish	5-7	
experimentally between chemical and physical		
changes, students must make observations and		
collect data from a variety of reactions and		
physical changes within the laboratory setting.		
d. Classification of reactions provides important	155-188	
organizational clarity for chemistry; therefore,		
students need to identify precipitation, acid-		
base and redex reactions		
Dase, and redux reactions.		
Big Idea 3: Changes in matter involve the rearr	angement and/or reorganization of atoms	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons.	angement and/or reorganization of atoms	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy	angement and/or reorganization of atoms sical transformations may be observed in several	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy	angement and/or reorganization of atoms sical transformations may be observed in several	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective	angement and/or reorganization of atoms sical transformations may be observed in several Reference	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1]	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change,	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2]	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2] Big Idea 3: Changes in matter involve the rearr	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2 angement and/or reorganization of atoms	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2] Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons.	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2 angement and/or reorganization of atoms	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2] Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2 angement and/or reorganization of atoms vsical transformations may be observed in several	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2] Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy.	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2 angement and/or reorganization of atoms vsical transformations may be observed in several	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2] Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy. Enduring Understanding 3.C.2. Net changes in of endothermic or exothermic	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2 5-7, Follow Up Problems 1.2 angement and/or reorganization of atoms vsical transformations may be observed in several energy for a chemical reaction can be	
Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2] Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy. Enduring Understanding 3.C.2. Net changes in endothermic or exothermic. Essential Knowledge Component	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2 5-7, Follow Up Problems 1.2 angement and/or reorganization of atoms vsical transformations may be observed in several energy for a chemical reaction can be Reference	
 Big Idea 3: Changes in matter involve the rearrand/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2] Big Idea 3: Changes in matter involve the rearrand/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy. Enduring Understanding 3.C.2. Net changes in energy. Essential Knowledge Component a. Macroscopic observations of energy changes 	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2 5-7, Follow Up Problems 1.2 angement and/or reorganization of atoms vsical transformations may be observed in several energy for a chemical reaction can be Reference 258-259	
 Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy Learning Objective (LO) 3.1 Students can translate among macroscopic observations of change, chemical equations, and particle views. [See SP 1.5, 7.1] (LO) 3.10. The student is able to evaluate the classification of a process as a physical change, chemical change, or ambiguous change based on both macroscopic observations and the distinction between rearrangement of covalent interactions and noncovalent interactions. [See SP 1.4, 6.1, connects to 5.D.2] Big Idea 3: Changes in matter involve the rearr and/or the transfer of electrons. Enduring Understanding 3.C. Chemical and phy ways and typically involve a change in energy. Enduring Understanding 3.C.2. Net changes in endothermic or exothermic. Essential Knowledge Component a. Macroscopic observations of energy changes when chemicals react are made possible by 	angement and/or reorganization of atoms sical transformations may be observed in several Reference 5-7 5-7, Follow Up Problems 1.2 5-7, Follow Up Problems 1.2 angement and/or reorganization of atoms vsical transformations may be observed in several energy for a chemical reaction can be Reference 258-259	

b. These observations should be placed within 266-267	
the context of the language of	
exothermic and endothermic change.	
c. The ability to translate observations made at 719-720	
the macroscopic level in the laboratory to a	
conceptual framework is aided by a graphical	
depiction of the process called an energy	
diagram, which provides a visual representation	
of the exothermic or endothermic nature of a	
reaction.	
d. It is important to be able to use an 544-549	
understanding of energy changes in chemical	
reactions to identify the role of endothermic and	
exothermic reactions in real-world processes.	
Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms	
and/or the transfer of electrons.	
Enduring Understanding 3.C. Chemical and physical transformations may be observed in severa	al
ways and typically involve a change in energy.	
Learning Objective Reference	
(LO) 3.11. The student is able to interpret 266-267; 288, Skill-Building Exercise 6.27	
observations regarding macroscopic energy	
changes associated with a reaction or process	
to generate a relevant symbolic and/or	
graphical representation of the energy changes.	
[See SP 1.5, 4.4]	
Big Idea 3: Changes in matter involve the rearrangement and/or reorganization of atoms	
and/or the transfer of electrons.	
Enduring Understanding 3.C. Chemical and physical transformations may be observed in severa	al
ways and typically involve a change in energy.	
Enduring Understanding 3.C.3. Electrochemistry shows the interconversion between chemical	
and electrical energy in galvanic and electrolytic cells.	
Essential Knowledge Component Reference	_
a Electrochemistry encompasses the study of 944-946	
redox reactions that occur within	
electrochemical cells. The reactions either	
generate electrical current in galvanic cells or	
are driven by an externally applied electrical	
potential in electrolytic cells. Visual	
representations of galvanic and electrolytic cells	
are tools of analysis to identify where half-	
reactions occur and the direction of current	
flow	
b Oxidation occurs at the anode and reduction 944-946	
occurs at the cathode for all	
c The overall electrical potential of galvanic 950-956	
cells can be calculated by identifying the	
oxidation half-reaction and reduction half-	
reaction and using a table of Standard	
Reduction Potentials	
d Many real systems do not operate at 061-064	
determination must account for the effect of	
--	--
concentrations. The qualitative effects of	
concentration on the cell potential can be	
understood by considering the cell potential as	
a driving force toward equilibrium, in that the	
farther the reaction is from equilibrium, the	
greater the magnitude of the cell potential. The	
standard cell potential, Eo, corresponds to the	
standard conditions of $Q = 1$. As the system	
approaches equilibrium, the magnitude (i.e.,	
absolute value) of the cell potential decreases,	
reaching zero at equilibrium (when Q = K).	
Deviations from standard conditions that take	
the cell further from equilibrium than Q = 1 will	
increase the magnitude of the cell potential	
relative to E°. Deviations from standard	
conditions that take the cell closer to	
equilibrium than $Q = 1$ will decrease the	
nagnitude of the cell potential relative to E°. In	
concentration cells, the direction of	
spontaneous electron flow can be determined	
by considering the direction needed to reach	
equilibrium.	
e. ΔG° (standard Gibbs free energy) is	944-946
proportional to the negative of the cell potential	
for the redox reaction from which it is	
constructed.	
f. Faraday's laws can be used to determine the	980-981
stoichiometry of the redox reactions occurring	
in an electrochemical cell with respect to the	
following:	
i. Number of electrons transferred	
ii. Mass of material deposited or removed from	
an electrode	
iii. Current	
iv. Time elapsed	
v. Charge of ionic species	
Big Idea 3: Changes in matter involve the rearr	angement and/or reorganization of atoms
and/or the transfer of electrons.	
Enduring Understanding 3.C. Chemical and physical and phy	sical transformations may be observed in several
ways and typically involve a change in energy.	
Learning Objective	Reference
(LO) 3.12. The student can make qualitative or	944-946; 988, Skill Building Exercises 21.27
quantitative predictions about galvanic or	
electrolytic reactions based on half-cell	
reactions and potentials and/or Faraday's laws.	
[See SP 2.2, 2.3, 6.4]	
(LO) 3.13. The student can analyze data	944-946; 989 Skill Building Exercises 21.28
regarding galvanic or electrolytic cells to	
identify properties of the underlying redox	
reactions. [See SP 5.1]	

	are determined by details of the molecular collisions.	Big Idea 4: Rates of chemical reactions are
--	--	---

Enduring Understanding 4.A. Reaction rates that depend on temperature and other environmental factors are determined by measuring changes in concentrations of reactants or products over time.

Enduring Understanding 4.A.1. The rate of a reaction is influenced by the concentration or pressure of reactants, the phase of the reactants and products, and environmental factors such as temperature and solvent.

Essential Knowledge Component	Reference
a. The rate of a reaction is measured by the	691
amount of reactants converted to products per	
unit of time.	
b. A variety of means exist to experimentally	699
measure the loss of reactants or increase of	
products as a function of time. One important	
method involves the spectroscopic	
determination of concentration through Beer's	
law.	
c. The rate of a reaction is influenced by	692-693
reactant concentrations (except in zero-order	
processes), temperature, surface area, and	
other environmental factors.	
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.
Enduring Understanding 4.A. Reaction rates tha	t depend on temperature and other
environmental factors are determined by measuri	ng changes in concentrations of reactants or
products over time.	
Learning Objective	Reference
(LO) 4.1. The student is able to design and/or	699; 734, Concept Review Questions 16.4, 16.5
interpret the results of an experiment regarding	
the factors (i.e., temperature, concentration,	
surface area) that may influence the rate of a	
reaction. [See SP 4.2, 5.1]	
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.
Enduring Understanding 4.A. Reaction rates tha	t depend on temperature and other
environmental factors are determined by measuri	ng changes in concentrations of reactants or
products over time.	
Enduring Understanding 4.A.2. The rate law sho	ows how the rate depends on reactant
concentrations.	
Essential Knowledge Component	Reference
a. The rate law expresses the rate of a reaction	698-701
as proportional to the concentration of each	
reactant raised to a power. The power of each	
reactant in the rate law is the order of the	
reaction with respect to that reactant. The sum	
of the powers of the reactant concentrations in	
the rate law is the overall order of the reaction.	
When the rate is independent of the	
concentration of a reactant, the reaction is	
zeroth order in that reactant, since raising the	
reactant concentration to the power zero is	
equivalent to the reactant concentration being	
absent from the rate law.	

b. In cases in which the concentration of any	698-701
other reactants remain essentially constant	
during the course of the reaction, the order of a	
reaction with respect to a reactant	
concentration can be inferred from plots of the	
concentration of reactant versus time. An	
appropriate laboratory experience would be for	
students to use spectrophotometry to	
determine how concentration varies with time.	
c. The method of initial rates is useful for	694-697
developing conceptual understanding of what a	
rate law represents, but simple algorithmic	
application should not be considered mastery	
of the concept. Investigation of data for initial	
rates enables prediction of how concentration	
will vary as the reaction progresses.	
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.
Enduring Understanding 4.A. Reaction rates that	t depend on temperature and other
environmental factors are determined by measuri	ng changes in concentrations of reactants or
products over time.	······································
Learning Objective	Reference
(LO) 4.2. The student is able to analyze	698-701: 738 Skill Building Exercises 16.34
concentration vs. time data to determine the	
rate law for a zeroth- first- or second-order	
reaction. [See SP 5.1. 6.4. connects to 4.A.3]	
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.A. Reaction rates that	ermined by details of the molecular collisions.
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.A. Reaction rates tha environmental factors are determined by measuring	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates tha environmental factors are determined by measuring products over time.	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.A. Reaction rates tha environmental factors are determined by measuri products over time. Enduring Understanding 4.A.3. The magnitude	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.A. Reaction rates tha environmental factors are determined by measuri products over time. Enduring Understanding 4.A.3. The magnitude reaction is contained quantitatively in the rate con	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of instant.
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates tha environmental factors are determined by measuri products over time. Enduring Understanding 4.A.3. The magnitude reaction is contained quantitatively in the rate con Essential Knowledge Component	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of instant. Reference
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude reaction is contained quantitatively in the rate con Essential Knowledge Component a. The proportionality constant in the rate law is	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of instant. Reference 698
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate con Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant.	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of istant. Reference 698
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude reaction is contained quantitatively in the rate cont Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of astant. Reference 698
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate cont Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of istant. Reference 698
 reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are defined in the section of the section rates and the section is contained quantitatively in the rate content of the section is contained quantitatively in the rate content of the section is contained quantitatively in the rate content of the section of the section of the section is constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. 	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of nstant. Reference 698 698
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measure products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate cont Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of istant. Reference 698 698 692-693
 reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are defendering Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate contained for the rate contained quantitatively in the rate contained the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. 	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of nstant. Reference 698 698 692-693
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates tha environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate content Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of istant. Reference 698 698 692-693 715
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate content Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction rates is contained in the temperature	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of astant. Reference 698 698 692-693 715
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate content Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction rates is contained in the temperature dependence of the rate constant.	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of nstant. Reference 698 698 692-693 715
 reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are defendering Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude or reaction is contained quantitatively in the rate contained quantitatively in the rate contained quantitatively in the rate contailed the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction rates is contained in the temperature dependence of the rate constant. e. For first-order reactions, half-life is often used 	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of nstant. Reference 698 698 692-693 715 711-714
 reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are defendering Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude reaction is contained quantitatively in the rate content is contained quantitatively in the rate content is contained quantitatively in the rate content is constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction rates is contained in the temperature dependence of the rate constant. e. For first-order reactions, half-life is often used as a representation for the rate constant. 	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of hstant. Reference 698 698 692-693 715 711-714
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates tha environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate content Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction rates is contained in the temperature dependence of the rate constant. e. For first-order reactions, half-life is often used as a representation for the rate constant because they are inversely proportional, and	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of nstant. Reference 698 698 692-693 715 711-714
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate content Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction rates is contained in the temperature dependence of the rate constant. e. For first-order reactions, half-life is often used as a representation for the rate constant because they are inversely proportional, and the half-life is independent of concentration. For	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of astant. Reference 698 698 692-693 715 711-714
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate content Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction rates is contained in the temperature dependence of the rate constant. e. For first-order reactions, half-life is often used as a representation for the rate constant because they are inversely proportional, and the half-life is independent of concentration. For example, radioactive decay processes provide	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of istant. Reference 698 692-693 715 711-714
reaction. [See SP 5.1, 6.4, connects to 4.A.3] Big Idea 4: Rates of chemical reactions are def Enduring Understanding 4.A. Reaction rates that environmental factors are determined by measuring products over time. Enduring Understanding 4.A.3. The magnitude of reaction is contained quantitatively in the rate context Essential Knowledge Component a. The proportionality constant in the rate law is called the rate constant. b. The rate constant is an important measurable quantity that characterizes a chemical reaction. c. Rate constants vary over many orders of magnitude because reaction rates vary widely. d. The temperature dependence of reaction rates is contained in the temperature dependence of the rate constant. e. For first-order reactions, half-life is often used as a representation for the rate constant because they are inversely proportional, and the half-life is independent of concentration. For example, radioactive decay processes provide real-world context.	ermined by details of the molecular collisions. t depend on temperature and other ng changes in concentrations of reactants or and temperature dependence of the rate of nstant. Reference 698 692-693 715 711-714

Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions.		
Enduring Understanding 4.A. Reaction rates that depend on temperature and other		
environmental factors are determined by measuring changes in concentrations of reactants or		
products over time.		
Learning Objective	Reference	
(LO) 4.3. The student is able to connect the	711-714; 713 Follow-Up Problems 16.7	
half-life of a reaction to the rate constant of a		
first-order reaction and justify the use of this		
relation in terms of the reaction being a first-		
order reaction. [See SP 2.1, 2.2]		
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.	
Enduring Understanding 4.B. Elementary reaction	ons are mediated by collisions between	
molecules. Only collisions having sufficient energy	y and proper relative orientation of reactants	
lead to products.		
Enduring Understanding 4.B.1. Elementary react	ions can be unimolecular or involve collisions	
between two or more molecules.		
Essential Knowledge Component	Reference	
a. The order of an elementary reaction can be	721-722	
inferred from the number of molecules		
participating in a collision: unimolecular		
reactions are first order, reactions involving		
bimolecular collisions are second order, etc.		
b. Elementary reactions involving the	722	
simultaneous collision of three particles are		
rare.		
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.	
Enduring Understanding 4.B. Elementary reaction	ons are mediated by collisions between	
molecules. Only collisions having sufficient energy and proper relative orientation of reactants		
lead to products.		
Learning Objective	Reference	
(LO) 4.4. The student is able to connect the rate	721-722; 743 Comprehensive Problems 16.112	
law for an elementary reaction to the frequency		
and success of molecular collisions, including		
connecting the frequency and success to the		
order and rate constant, respectively.		
[See SP 7.1, connects to 4.A.3, 4.B.2]		
Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions.		
Enduring Understanding: 4.B. Elementary reactions are mediated by collisions between		
molecules. Only collisions having sufficient energy and proper relative orientation of reactants		
lead to products.		
Enduring Understanding 4.B.2. Not all collisions are successful. To get over the activation energy		
barrier, the colliding species need sufficient energy	y. Also, the orientations of the reactant	
molecules during the collision must allow for the r	earrangement of reactant bonds to form product	
bonds.	bonds.	
Essential Knowledge Component	Reference	
a. Unimolecular reactions occur because	Reference 715-721	
a. Unimolecular reactions occur because collisions with solvent or background molecules	Reference 715-721	
a. Unimolecular reactions occur because collisions with solvent or background molecules activate the molecule in a way that can be	Reference 715-721	
a. Unimolecular reactions occur because collisions with solvent or background molecules activate the molecule in a way that can be understood in terms of a Maxwell-Boltzmann	Reference 715-721	

b. Collision models provide a qualitative	715-716
explanation for order of elementary	
reactions and the temperature dependence of	
c in most reactions, only a small fraction of the	715
collisions leads to a reaction. Successful	/15
collisions have both sufficient energy to	
overcome activation energy barriers and	
orientations that allow the bonds to rearrange in	
the required manner.	
d. The Maxwell-Boltzmann distribution	715-716
describes the distribution of particle energies;	
this distribution can be used to gain a	
qualitative estimate of the fraction of collisions	
with sufficient energy to lead to a reaction, and	
also how that fraction depends on temperature.	
Big Idea 4: Rates of chemical reactions are de	termined by details of the molecular collisions.
Enduring Understanding 4.B. Elementary reaction	ons are mediated by collisions between
molecules. Only collisions having sufficient energy	gy and proper relative orientation of reactants
lead to products.	
Learning Objective	Reference
(LO) 4.5. The student is able to explain the	715; 739, Concept Review Questions 16.50
difference between collisions that convert	
reactants to products and those that do not in	
terms of energy distributions and molecular	
orientation. [See SP 6.2]	
Big Idea 4: Rates of chemical reactions are de	termined by details of the molecular collisions.
Enduring Understanding 4.B. Elementary reaction	ons are mediated by collisions between
molecules. Only collisions having sufficient energy	gy and proper relative orientation of reactants
lead to products.	
Enduring Understanding 4.B.3. A successful co	lision can be viewed as following a reaction path
with an associated energy profile.	Deference
Essential Knowledge Component	
a. Elementary reactions typically involve the	720
preaking of some bonds and the forming of new	
sot of motions involved in this rearrangement as	
occurring along a single reaction coordinate	
b. The energy profile gives the energy along	720
this path, which typically proceeds from	120
reactants through a transition state to	
products	
c The Arrhenius equation can be used to	716-717
summarize experiments on the temperature	
dependence of the rate of an elementary	
reaction and to interpret this dependence in	
terms of the activation energy needed to reach	

Did idea 4. Nales of chemical reactions are determined by details of the molecular com
--

Enduring Understanding 4.B. Elementary reactions are mediated by collisions between molecules. Only collisions having sufficient energy and proper relative orientation of reactants lead to products.

Learning Objective	Reference	
(LO) 4.6. The student is able to use	719; 741 Comprehensive Problem 16.84	
representations of the energy profile for an		
elementary reaction (from the reactants,		
through the transition state, to the products) to		
make qualitative predictions regarding the		
relative temperature dependence of the		
reaction rate. [See SP 1.4, 6.4]		
(LO) 4.7. The student is able to evaluate	719; 740 Problems in Context 16.77	
alternative explanations, as expressed by		
reaction mechanisms, to determine which are		
consistent with data regarding the overall rate		
of a reaction, and data that can be used to infer		
the presence of a reaction intermediate. [See		
SP 6.5, connects to 4.C.1, 4.C.2, 4.C.3]		
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.	
Enduring Understanding 4.C. Many reactions proceed via a series of elementary reactions.		
Enduring Understanding 4.C.1. The mechanism of a multistep reaction consists of a series of		
elementary reactions that add up to the overall reaction.		
Essential Knowledge Component	Reference	
a. The rate law of an elementary step is related	716	
to the number of reactants, as accounted for by		
collision theory.		
b. The elementary steps add to give the overall	721-722	
reaction. The balanced chemical equation for		
the overall reaction specifies only the		
stoichiometry of the reaction, not the rate.		
c. A number of mechanisms may be postulated	721	
for most reactions, and experimentally		
determining the dominant pathway of such		
reactions is a central activity of chemistry.		
Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions.		
Enduring Understanding 4.C. Many reactions proceed via a series of elementary reactions		
Enduring Understanding 4.C.2. In many reaction	Enduring Understanding 4.C.2. In many reactions, the rate is set by the slowest elementary	
reaction, or rate-limiting step		
Essential Knowledge Component	Reference	
a. For reactions in which each elementary step	723-726	
is irreversible, the rate of the reaction is set by		
the slowest elementary step (i.e., the rate-		
limiting step).		

Big Idea 4: Rates of chemical reactions are determined by details of the molecular collisions.	
Enduring Understanding 4.C. Many reactions proceed via a series of elementary reactions.	
Enduring Understanding 4.C.3. Reaction interme	ediates, which are formed during the reaction but
not present in the overall reaction, play an important role in multistep reactions.	
Essential Knowledge Component	Reference
a. A reaction intermediate is produced by some	723-726
elementary steps and consumed by others,	
such that it is present only while a reaction is	
occurring.	
b. Experimental detection of a reaction	723-726
intermediate is a common way to build	
evidence in support of one reaction mechanism	
over an alternative mechanism.	
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.
Enduring Understanding 4.D. Reaction rates ma	y be increased by the presence of a catalyst.
Enduring Understanding 4.D.1. Catalysts functio	n by lowering the activation energy of an
elementary step in a reaction mechanism, and by	providing a new and faster reaction mechanism.
Essential Knowledge Component	Reference
a. A catalyst can stabilize a transition state,	727-730
lowering the activation energy and thus	
increasing the rate of a reaction.	
b. A catalyst can increase a reaction rate by	727-730
participating in the formation of a new reaction	
intermediate, thereby providing a new reaction	
pathway or mechanism.	
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma	ermined by details of the molecular collisions. y be increased by the presence of a catalyst.
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective (LO) 4.8. The student can translate among	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations,	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5]	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5]	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates ma Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5]	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates mail Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions.
Big Idea 4: Rates of chemical reactions are detEnduring Understanding: 4.D. Reaction rates madeLearning Objective(LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5]Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates made	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. by be increased by the presence of a catalyst.
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates made Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates made	ermined by details of the molecular collisions. by be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. by be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates made Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates made Enduring Understanding 4.D.2. Important classes catalysis, and enzyme catalysis.	ermined by details of the molecular collisions. y be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates made Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates made Enduring Understanding 4.D.2. Important classes catalysis, and enzyme catalysis.	ermined by details of the molecular collisions. y be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates made Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates made Enduring Understanding 4.D.2. Important classes catalysis, and enzyme catalysis. Essential Knowledge Component a. In acid-base catalysis, a reactant either gains	ermined by details of the molecular collisions. y be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference 727-730
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates made Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates made Enduring Understanding 4.D.2. Important classes catalysis, and enzyme catalysis. Essential Knowledge Component a. In acid-base catalysis, a reactant either gains or loses a proton; this changes the rate of the	ermined by details of the molecular collisions. y be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference 727-730
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates made Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates made Enduring Understanding 4.D.2. Important classes catalysis, and enzyme catalysis. Essential Knowledge Component a. In acid-base catalysis, a reactant either gains or loses a proton; this changes the rate of the reaction.	ermined by details of the molecular collisions. Py be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference 727-730
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates mail Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates mail Enduring Understanding 4.D.2. Important classe catalysis, and enzyme catalysis. Essential Knowledge Component a. In acid-base catalysis, a reactant either gains or loses a proton; this changes the rate of the reaction. b. In surface catalysis, either a new reaction	ermined by details of the molecular collisions. y be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference 727-730 727-730
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates made Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates made Enduring Understanding 4.D.2. Important classes catalysis, and enzyme catalysis. Essential Knowledge Component a. In acid-base catalysis, a reactant either gains or loses a proton; this changes the rate of the reaction. b. In surface catalysis, either a new reaction intermediate is formed, or the	ermined by details of the molecular collisions. y be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference 727-730 727-730
Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates mat Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates mat Enduring Understanding 4.D.2. Important classe catalysis, and enzyme catalysis. Essential Knowledge Component a. In acid-base catalysis, a reactant either gains or loses a proton; this changes the rate of the reaction. b. In surface catalysis, either a new reaction intermediate is formed, or the probability of successful collisions is modified.	ermined by details of the molecular collisions. y be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference 727-730 727-730
 Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates material Learning Objective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates material Enduring Understanding 4.D.2. Important classe catalysis, and enzyme catalysis. Essential Knowledge Component a. In acid-base catalysis, a reactant either gains or loses a proton; this changes the rate of the reaction. b. In surface catalysis, either a new reaction intermediate is formed, or the probability of successful collisions is modified. c. Some enzymes accelerate reactions by the time to the protections of the state of the reactions and the state of the state of the probability of successful collisions is modified. 	ermined by details of the molecular collisions. y be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference 727-730 727-730 727-730
 Big Idea 4: Rates of chemical reactions are det Enduring Understanding: 4.D. Reaction rates mathematical problective (LO) 4.8. The student can translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst. [See SP 1.5] Big Idea 4: Rates of chemical reactions are det Enduring Understanding 4.D. Reaction rates mathematical section rates are det Enduring Understanding 4.D.2. Important classe catalysis, and enzyme catalysis. Essential Knowledge Component a. In acid-base catalysis, a reactant either gains or loses a proton; this changes the rate of the reaction. b. In surface catalysis, either a new reaction intermediate is formed, or the probability of successful collisions is modified. c. Some enzymes accelerate reactions by binding to the reactants in a way that lowers the article protection and the reactant of the reactants in a way that lowers the article protection by binding to the reactant of the reactants in a way that lowers the article probability of successful collisions is modified. 	ermined by details of the molecular collisions. Py be increased by the presence of a catalyst. Reference 727-730; 740 Concept Review Question 16.78 ermined by details of the molecular collisions. y be increased by the presence of a catalyst. s in catalysis include acid-base catalysis, surface Reference 727-730 727-730

reactant species to form a new reaction	
intermediate.	
Big Idea 4: Rates of chemical reactions are det	ermined by details of the molecular collisions.
Enduring Understanding 4.D. Reaction rates ma	y be increased by the presence of a catalyst.
Learning Objective	Reference
(LO) 4.9. The student is able to explain changes	727-730; 742, Comprehensive Problem 16.99
in reaction rates arising from the use of acid-	
base catalysts, surface catalysts, or enzyme	
catalysts, including selecting appropriate	
mechanisms with or without the catalyst	
present. [See SP 6.2, 7.2]	

Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter

Enduring Understanding 5.A. Two systems with different temperatures that are in thermal contact will exchange energy. The quantity of thermal energy transferred from one system to another is called heat.

Enduring Understanding 5.A.1. Temperature is a measure of the average kinetic energy of atoms and molecules.

Essential Knowledge Component	Reference
a. All of the molecules in a sample are in	231
motion.	
b. The Kelvin temperature of a sample of matter	235
is proportional to the average kinetic energy of	
the particles in the sample. When the average	
kinetic energy of the particles in the sample	
doubles, the Kelvin temperature is doubled. As	
the temperature approaches 0 K (zero Kelvin),	
the average kinetic energy of a system	
approaches a minimum near zero.	
c. The Maxwell-Boltzmann distribution shows	232
that the distribution of kinetic energies	
becomes greater (more disperse) as	
temperature increases.	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter	
Enduring Understanding 5 A Two systems with	different temperatures that are in thermal contact

Enduring Understanding 5.A. Two systems with different temperatures that are in thermal contact will exchange energy. The quantity of thermal energy transferred from one system to another is called heat.

Learning Objective	Reference
(LO) 5.1. The student is able to create or use	258-261; 289 Skill Building Exercises 6.46
graphical representations in order to connect	
the dependence of potential energy to the	
distance between atoms and factors, such as	
bond order (for covalent interactions) and	
polarity (for intermolecular interactions), which	
influence the interaction strength. [See SP 1.1,	
1.4, 7.2]	
(LO) 5.2. The student is able to relate	232; 251 Skill Building Exercise 5.78
temperature to the motions of particles, either	
via particulate representations, such as	
drawings of particles with arrows indicating	
velocities, and/or via representations of average	
kinetic energy and distribution of kinetic	
energies of the particles, such as plots of the	
Maxwell-Boltzmann distribution. [See SP 1.1, 1.4,	
7.1]	

Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter

Enduring Understanding 5.A. Two systems with different temperatures that are in thermal contact will exchange energy. The quantity of thermal energy transferred from one system to another is called heat.

Enduring Understanding 5.A.2. The process of kinetic energy transfer at the particulate scale is referred to in this course as heat transfer, and the spontaneous direction of the transfer is always from a hot to a cold body.

Essential Knowledge Component	Reference
a. On average, molecules in the warmer body	234-236
have more kinetic energy than the molecules in	
the cooler body.	
b. Collisions of molecules that are in thermal	231
contact transfer energy.	
c. Scientists describe this process as "energy is	258-260
transferred as heat."	
d. Eventually, thermal equilibrium is reached as	235
the molecular collisions continue. The average	
kinetic energy of both substances is the same	
at thermal equilibrium.	
e. Heat is not a substance, i.e., it makes no	257-260
sense to say that an object contains a certain	
amount of heat. Rather, "heat exchange" or	
"transfer of energy as heat" refers to the	
process in which energy is transferred from a	
hot to a cold body in thermal contact.	
f. The transfer of a given amount of thermal	268
energy will not produce the same temperature	
change in equal masses of matter with differing	
specific heat capacities.	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter.	
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with	different temperatures that are in thermal contact
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energy	different temperatures that are in thermal contact ergy transferred from one system to another is
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energies called heat.	different temperatures that are in thermal contact ergy transferred from one system to another is
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energy called heat. Learning Objective	different temperatures that are in thermal contact ergy transferred from one system to another is Reference
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energy called heat. Learning Objective (LO) 5.3. The student can generate	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energy called heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energied heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems 	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energied heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic 	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energied heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energination of thermal energy called heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1]	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energisted heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1] Big Idea 5: The laws of thermodynamics described 	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70 e the essential role of energy and explain and
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energistical deat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1] Big Idea 5: The laws of thermodynamics described predict the direction of changes in matter 	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70 e the essential role of energy and explain and
and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energistic called heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1] Big Idea 5: The laws of thermodynamics describe predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70 e the essential role of energy and explain and created nor destroyed, but only transformed from
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with a will exchange energy. The quantity of thermal energister of the systems. The quantity of thermal energister of the systems are predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1] Big Idea 5: The laws of thermodynamics described predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of one form to another. 	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70 e the essential role of energy and explain and created nor destroyed, but only transformed from
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energister called heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1] Big Idea 5: The laws of thermodynamics described predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of one form to another. 	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70 e the essential role of energy and explain and created nor destroyed, but only transformed from rred between systems either through heat
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energistical deat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1] Big Idea 5: The laws of thermodynamics describe predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of one form to another. 	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70 e the essential role of energy and explain and created nor destroyed, but only transformed from rred between systems either through heat e other system.
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energister of the student can generate (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1] Big Idea 5: The laws of thermodynamics describe predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither one form to another. Enduring Understanding 5.B.1. Energy is transfer transfer or through one system doing work on the transfer doing work on the tr	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70 e the essential role of energy and explain and created nor destroyed, but only transformed from rred between systems either through heat e other system. Reference
 and predict the direction of changes in matter. Enduring Understanding 5.A Two systems with will exchange energy. The quantity of thermal energistic called heat. Learning Objective (LO) 5.3. The student can generate explanations or make predictions about the transfer of thermal energy between systems based on this transfer being due to a kinetic energy transfer between systems arising from molecular collisions. [See SP 7.1] Big Idea 5: The laws of thermodynamics described predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of one form to another. Enduring Understanding 5.B.1. Energy is transfer transfer or through one system doing work on the transfer or through one system doing work on the transfer or through one system doing work on the transfer or through one system doing work on the transfer or through one system doing work on the transfer or through one system doing work on the transfer or through one system doing work or the transfer or through one system doing wor	different temperatures that are in thermal contact ergy transferred from one system to another is Reference 232-234; 251 Concept Review Question 5.70 e the essential role of energy and explain and created nor destroyed, but only transformed from tred between systems either through heat o ther system. Reference 257

transfer of thermal energy is an important	
concept in thermodynamics.	
b. An additional form of energy transfer is	247-260
through work. Work is described by other	
scientific frameworks, such as Newtonian	
Mechanics or electromagnetism.	
c. In this course, calculations involving work are	263-264
limited to that associated with changes in	
volume of a gas. An example of the transfer of	
energy between systems through work is the	
expansion of gas in a steam engine or car	
piston. Reasoning about this energy transfer	
can be based on molecular collisions with the	
piston: The gas is doing work on the piston, and	
energy is transferred from the gas to the piston.	
Big Idea 5: The laws of thermodynamics descri and predict the direction of changes in matter	be the essential role of energy and explain
Enduring Understanding 5.B. Energy is neither of	created nor destroyed, but only transformed from
one form to another.	
Learning Objective	Reference
(LO) 5.1 The student is able to create or use	263-264; 289 Skill Building Exercise 6.31
graphical representations in order to connect	
the dependence of potential energy to the	
distance between atoms and factors, such as	
bond order (for covalent interactions) and	
polarity (for intermolecular interactions), which	
influence the interaction strength.	
[See SP 1.1, 1.4, 7.2]	
Big Idea 5: The laws of thermodynamics descri and predict the direction of changes in matter.	be the essential role of energy and explain
Enduring Understanding 5.B. Energy is neither of	created nor destroyed, but only transformed from
one form to another.	····· · · · · · · · · · · · · · · · ·
Enduring Understanding 5.B.2. When two syste	ms are in contact with each other and are
otherwise isolated, the energy that comes out of	one system is equal to the energy that goes into
the other system. The combined energy of the tw	o systems remains fixed. Energy transfer can
occur through either heat exchange or work.	
Essential Knowledge Component	Reference
a. When energy is transferred from system 1 to	261
system 2, the energy transferred from system 1	
is equal in magnitude to the energy transferred	
to system 2.	
b. If a system transfers energy to another	261
system, its energy must decrease. Likewise, if	
energy is transferred into a system, its energy	
must increase.	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter	
and predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of	reated nor destroyed, but only transformed from
and predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of one form to another.	created nor destroyed, but only transformed from
and predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of one form to another. Learning Objective	created nor destroyed, but only transformed from Reference
and predict the direction of changes in matter Enduring Understanding 5.B. Energy is neither of one form to another. Learning Objective (LO) 5.4. The student is able to use	Reference 261; 289 Skill Building Exercises 6.30

of the energy changes occurring in two or more	
interacting systems, including identification of	
the systems, the type (heat versus work), or the	
direction of energy flow. [See SP 1.4, 2.2,	
connects to 5.B.1, 5.B.2]	
(LO) 5.5. The student is able to use	261; 289 Skill Building Exercises 6.45
conservation of energy to relate the magnitudes	
of the energy changes when two nonreacting	
substances are mixed or brought into contact	
with one another. [See SP 2.2, connects to	
5.B.1, 5.B.2]	
Big Idea 5: The laws of thermodynamics descri and predict the direction of changes in matter	be the essential role of energy and explain
Enduring Understanding 5.B. Energy is neither of	created nor destroyed, but only transformed from
one form to another.	
Enduring Understanding 5.B.3. Chemical system	ns undergo three main processes that change
their energy: heating/cooling, phase transitions, a	nd chemical reactions.
Essential Knowledge Component	Reference
a. Heating a system increases the energy of the	257
system, while cooling a system decreases the	
energy. A liter of water at 50°C has more	
energy than a liter of water at 25°C.	
b. The amount of energy needed to heat one	268
gram of a substance by 1°C is the specific heat	
capacity of that substance.	
c. Energy must be transferred to a system to	475-478
cause it to melt (or boil). The energy of the	
system therefore increases as the system	
undergoes a solid-liquid (or liquid-gas) phase	
transition. Likewise, a system gives off energy	
when it freezes (or condenses). The energy of	
the system decreases as the system undergoes	
a liquid-solid (or gas-liquid) phase transition.	
d. The amount of energy needed to vaporize	471-474
one mole of a pure substance is the molar	
enthalpy of vaporization, and the energy	
released in condensation has an equal	
magnitude. The molar enthalpy of fusion is the	
energy absorbed when one mole of a pure solid	
melts or changes from the solid to liquid state	
and the energy released when the liquid	
solidifies has an equal magnitude	
e. When a chemical reaction occurs, the energy	266-267
of the system decreases (exothermic reaction),	
increases (endothermic reaction), or remains	
the same. For exothermic reactions, the energy	
lost by the reacting molecules (system) is	
gained by the surroundings. The energy is	
transferred to the surroundings by either heat	
or work. Likewise, for endothermic reactions,	
the system gains energy from the surroundings	
by heat transfer or work done on the system.	

f. The enthalpy change of reaction gives the	266-267
amount of energy released (for negative values)	
or absorbed (for positive values) by a chemical	
reaction at constant pressure.	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter	
Enduring Understanding5.B Energy is neither cr	eated nor destroyed, but only transformed from
one form to another.	
Learning Objective	Reference
(LO) 5.6. The student is able to use calculations	266-267; 291 Skill Building Exercises 6.74
or estimations to relate energy changes	
associated with heating/cooling a substance to	
the heat capacity, relate energy changes	
associated with a phase transition to the	
enthalpy of fusion/vaporization, relate energy	
changes associated with a chemical reaction to	
the enthalpy of the reaction, and relate energy	
Changes to PAV work. [See SP 2.2, 2.3]	he the accepticit value of an average and averagin
Big idea 5: The laws of thermodynamics described and predict the direction of changes in matter	be the essential role of energy and explain
Enduring Understanding 5 B. Energy is paither of	created nor destroyed, but only transformed from
one form to another	reated for destroyed, but only transformed from
Enduring Understanding 5 B 4 Calorimetry is ar	experimental technique that is used to
determine the heat exchanged/transferred in a ch	emical system.
Essential Knowledge Component	Reference
a. The experimental setup for calorimetry is the	268-273
following: A chemical system is put in thermal	
contact with a heat bath. The heat bath is a	
substance, such as water, whose heat capacity	
has been well established by previous	
experiments. A process is initiated in the	
chemical system (heating/cooling, phase	
transition, or chemical reaction), and the change	
in temperature of the heat bath is determined.	
b. Because the heat capacity of the heat bath is	268-273
known, the observed change in temperature	
can be used to determine the amount of energy	
exchanged between the system and the heat	
bath.	
c. The energy exchanged between the system	268-273
and the heat bath is equal in magnitude to the	
change in energy of the system. If the heat bath	
increased in temperature, its energy increased,	
and the energy of the system decreased by this	
amount. If the heat bath decreased in	
temperature, and therefore energy, the energy	
of the system increased by this amount.	200 272
a. Because calorimetry measures the change in	268-2/3
energy of a system, it can be used to determine	
line neat associated with each of the processes	
listed in 5.8.3. In this manner, calorimetry may	
i pe used to determine heat capacities.	

enthalpies of vaporization, enthalpies of fusion,	
and enthalpies of reactions. Only constant	
pressure calorimetry is required in the course	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter.	
Enduring Understanding 5.B. Energy is neither of	created nor destroyed, but only transformed from
one form to another.	
Learning Objective	Reference
(LO) 5.7. The student is able to design and/or	268-273; 289 Skill Building Exercises 6.47
interpret the results of an experiment in which	, 3
calorimetry is used to determine the change in	
enthalpy of a chemical process	
(heating/cooling, phase transition, or chemical	
reaction) at constant pressure. [See SP 4.2, 5.1.	
6.4]	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter.	
Enduring Understanding 5.C. Breaking bonds re	equires energy, and making bonds releases
energy.	· · · · · · · · · · · · · · · · · · ·
Enduring Understanding 5.C.1. Potential energy	is associated with a particular geometric
arrangement of atoms or ions and the electrostati	c interactions between them.
Essential Knowledge Component	Reference
a. The attraction between the electrons of one	379
atom and the protons of another explains the	
tendency for the atoms to approach one	
another. The repulsion between the nuclei (or	
core electrons) explains why the atoms repel	
one another at close distance. The distance at	
which the energy of interaction is minimized is	
called the bond length, and the atoms vibrate	
about this minimum energy position.	
b. A graph of energy versus the distance	379
between atoms can be plotted and interpreted.	
Using this graph, it is possible to identify bond	
length and bond energy.	
c. Conceptually, bond making and bond	380-383
breaking are opposing processes that have the	
same magnitude of energy associated with	
them. Thus, convention becomes important, so	
we define the bond energy as the energy	
required to break a bond.	
d. Because chemical bonding arises from	380-383
electrostatic interaction between electrons and	
nuclei, larger charges tend to lead to larger	
strengths of interaction. Thus, triple bonds are	
stronger than double or single bonds because	
they share more pairs of electrons.	
e. Stronger bonds tend to be shorter bonds.	380-383

Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.	
Enduring Understanding 5.C. Breaking bonds requires energy, and making bonds releases	
Learning Objective	Peference
(I O) 51 The student is able to create or use	380-381: 401 Concept Review Questions 9 48
graphical representations in order to connect	
the dependence of potential energy to the	
distance between atoms and factors, such as	
bond order (for covalent interactions) and	
polarity (for intermolecular interactions), which	
influence the interaction strength.	
[See SP 1.1, 1.4, 7.2]	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter.	
Enduring Understanding 5.C. Breaking bonds re	equires energy, and making bonds releases
energy.	
Enduring Understanding 5.C.2. The net energy	change during a reaction is the sum of the
energy required to break the bonds in the reactar	nt molecules and the energy released in forming
the bonds of the product molecules. The net char	nge in energy may be positive for endothermic
reactions where energy is required, or negative for	or exothermic reactions where energy is released.
Essential Knowledge Component	Reference
a. During a chemical reaction, bonds are broken	386-390
and/or formed, and these events change the	
potential energy of the reaction system.	
b. The average energy required to break all of	386-390
the bonds in the reactant molecules can be	
estimated by adding up the average bond	
the reactant molecules. Likewise, the average	
operative released in forming the bonds in the	
products can be estimated. If the energy	
released is greater than the energy required	
then the reaction is exothermic. If the energy	
required is greater than the energy released	
then the reaction is endothermic.	
c. For an exothermic reaction, the products are	386-390
at a lower potential energy compared with the	
reactants. For an endothermic reaction, the	
products are at a higher potential energy than	
the reactants.	
d. In an isolated system, energy is conserved.	386-390
Thus, if the potential energy of the products is	
lower than that of the reactants, then the kinetic	
energy of the products must be higher. For an	
exothermic reaction, the products are at a	
higher kinetic energy. This means that they are	
at a higher temperature. Likewise, for an	
endothermic reaction, the products are at a	
Iower kinetic energy and, thus, at a lower	
temperature.	

e. Because the products of a reaction are at a	258-259
higher or lower temperature than their	
surroundings, the products of the reaction move	
toward thermal equilibrium with the	
surroundings. Thermal energy is transferred to	
the surroundings from the hot products in an	
exothermic reaction. Thermal energy is	
transferred from the surroundings to the cold	
products in an endothermic reaction.	
f. Although the concept of "state functions" is	275-276
not required for the course, students should	
understand these Hess's law ideas: When a	
reaction is reversed, the sign of the enthalpy of	
the reaction is changed; when two (or more)	
reactions are summed to obtain an overall	
reaction, the enthalpies of reaction are summed	
to obtain the net enthalpy of reaction.	
g. Tables of standard enthalpies of formation	278-280
can be used to calculate the standard enthalpy	
of reactions. Uses should go beyond	
algorithmic calculations and include, for	
instance, the use of such tables to compare	
related reactions, such as extraction of	
elemental metals from metal oxides.	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter.	
Enduring Understanding 5.C. Breaking bonds re	equires energy, and making bonds releases
Enduring Understanding 5.C. Breaking bonds reenergy.	equires energy, and making bonds releases
Enduring Understanding 5.C. Breaking bonds re energy. Learning Objective	equires energy, and making bonds releases Reference
Enduring Understanding 5.C. Breaking bonds re energy. Learning Objective (LO) 5.8. The student is able to draw qualitative	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics description of the statement of the sta	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriant and predict the direction of changes in matter. 	Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriant predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermodynamics describution. 	Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy.
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules;
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriant predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experient 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; ace an attractive force.
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component 	Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; nce an attractive force. Reference
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; ace an attractive force. Reference 484-490
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; nce an attractive force. Reference 484-490
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; nce an attractive force. Reference 484-490
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriant predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, dipole-induced dipole, and induced dipole- 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; ace an attractive force. Reference 484-490
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, dipole-induced dipole, and induced dipole-induced dipole (dispersion) can be defined. 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; ace an attractive force. Reference 484-490
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, dipole-induced dipole, and induced dipole-induced dipole (dispersion) can be defined. b. All substances will manifest dispersion forces, 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; nce an attractive force. Reference 484-490
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, dipole-induced dipole, and induced dipole-induced dipole (dispersion) can be defined. b. All substances will manifest dispersion forces, and these forces tend to be larger when the 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; nce an attractive force. Reference 488-489
 Enduring Understanding 5.C. Breaking bonds reenergy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descriand predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, dipole-induced dipole, and induced dipole-induced dipole (dispersion) can be defined. b. All substances will manifest dispersion forces, and these forces tend to be larger when the molecules involved have more electrons or 	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; nce an attractive force. Reference 488-489
Enduring Understanding 5.C. Breaking bonds re- energy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descri- and predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experient Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, dipole-induced dipole, and induced dipole- induced dipole (dispersion) can be defined. b. All substances will manifest dispersion forces, and these forces tend to be larger when the molecules involved have more electrons or have a larger surface area.	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; ace an attractive force. Reference 488-489
Enduring Understanding 5.C. Breaking bonds re- energy. Learning Objective (LO) 5.8. The student is able to draw qualitative and quantitative connections between the reaction enthalpy and the energies involved in the breaking and formation of chemical bonds. [See SP 2.3, 7.1, 7.2] Big Idea 5: The laws of thermodynamics descri- and predict the direction of changes in matter. Enduring Understanding 5.D. Electrostatic force atoms or ions, and breaking the resultant intermo Enduring Understanding 5.D.1. Potential energy as molecules draw near each other, they experied Essential Knowledge Component a. Chemists categorize intermolecular forces in terms of the nature of the charge distributions in the molecules involved. Thus, dipole-dipole, dipole-induced dipole, and induced dipole- induced dipole (dispersion) can be defined. b. All substances will manifest dispersion forces, and these forces tend to be larger when the molecules involved have more electrons or have a larger surface area. c. Hydrogen bonding is a relatively strong type	equires energy, and making bonds releases Reference 386-390; 401 Skill Building Exercises 9.46 be the essential role of energy and explain s exist between molecules as well as between lecular interactions requires energy. is associated with the interaction of molecules; nce an attractive force. Reference 484-490 488-489 486-487

hydrogen atoms that are covalently bonded to the highly electronegative atoms (N, O, and F) are also attracted to the negative end of a dipole formed by the electronegative atom (N, O, and F) in a different molecule, or a different	
part of the same molecule. When hydrogen bonding is present, even small molecules may	
have strong intermolecular attractions.	
Big Idea 5: The laws of thermodynamics descr	ibe the essential role of energy and explain
and predict the direction of changes in matter.	
Enduring Understanding 5.D. Electrostatic force	es exist between molecules as well as between
atoms or ions, and breaking the resultant intermo	ecular interactions requires energy.
Learning Objective	Reference
(LO) 5.1 The student is able to create or use graphical representations in order to connect the dependence of potential energy to the distance between atoms and factors, such as bond order (for covalent interactions) and polarity (for intermolecular interactions), which influence the interaction strength. [See SP 1.1, 1.4, 7.2]	386-390; 484-490; 527, Concept Review Question 12.33
(LO) 5.9. The student is able to make claims and/or predictions regarding relative magnitudes of the forces acting within collections of interacting molecules based on the distribution of electrons within the molecules and the types of intermolecular forces through which the molecules interact. [See SP 6.4]	484-490; 527 Skill Building Exercise 12.39
Big Idea 5: The laws of thermodynamics descr	ibe the essential role of energy and explain
and predict the direction of changes in matter.	
Enduring Understanding 5.D. Electrostatic force	es exist between molecules as well as between
atoms or ions, and breaking the resultant intermo	ecular interactions requires energy.
Enduring Understanding 5.D.2. At the particular	te scale, chemical processes can be distinguished
from physical processes because chemical bond	s can be distinguished from intermolecular
interactions.	
Essential Knowledge Component	Reference
a. The distinction between chemical and	5-7
physical processes relates to the nature of the	
change in molecular interactions. Processes	
that involve the breaking and/or formation of	
chemical bonds are classified as chemical	
processes. Processes that involve only changes	
in weak intermolecular interactions, such as	
phase changes, are classified as physical	
processes.	
b. A gray area exists between these two extremes. For instance, the dissolution of a salt in water involves breaking of ionic bonds and the formation of interactions between ions and solvent. The magnitude of these interactions	WebQuest 10

can be comparable to covalent bond strengths,	
and so plausible arguments can be made for	
classifying dissolution of a salt as either a	
physical or chemical process.	
Big Idea 5: The laws of thermodynamics desc	ibe the essential role of energy and explain
and predict the direction of changes in matter	•
Enduring Understanding 5.D. Electrostatic force	es exist between molecules as well as between
atoms or ions, and breaking the resultant intermo	blecular interactions requires energy.
Learning Objective	Reference
(LO) 5.10. The student can support the claim	5-7; 37, Concept Review Question 1.1
about whether a process is a chemical or	
physical change (or may be classified as both)	
based on whether the process involves	
changes in intramolecular versus	
intermolecular interactions. [See SP 5.1]	
Big Idea 5: The laws of thermodynamics descuent and predict the direction of changes in matter	ibe the essential role of energy and explain
Enduring Understanding 5.D. Electrostatic force	es exist between molecules as well as between
atoms or ions, and breaking the resultant intermo	plecular interactions requires energy.
Essential Knowledge 5.D.3. Noncovalent and ir	termolecular interactions play important roles in
many biological and polymer systems.	
Essential Knowledge Component	Reference
a. In large biomolecules, noncovalent	539-544
interactions may occur between different	
molecules or between different regions of the	
same large biomolecule.	
b. The functionality and properties of molecules	431-432
depend strongly on the shape of the molecule,	
which is largely dictated by noncovalent	
interactions. For example, the function of	
enzymes is dictated by their structure, and	
properties of synthetic polymers are modified	
by manipulating their chemical composition and	
structure.	
Big Idea 5: The laws of thermodynamics desc	ibe the essential role of energy and explain
and predict the direction of changes in matter	
Enduring Understanding 5.D. Electrostatic force	es exist between molecules as well as between
atoms or ions, and breaking the resultant intermo	blecular interactions requires energy.
Learning Objective	Reference
(LO) 5.11. The student is able to identify the	539-544; 576, Concept Review Question 13.17
noncovalent interactions within and between	
large molecules, and/or connect the shape	
and function of the large molecule to the	
presence and magnitude of these interactions.	
[See SP 7.2]	
Big Idea 5: The laws of thermodynamics desci	ibe the essential role of energy and explain
and predict the direction of changes in matter	
Enduring Understanding 5.E. Chemical or phys	ical processes are driven by a decrease in
enthalpy or an increase in entropy, or both.	
Essential Knowledge 5.E.I. Entropy is a measur	e of the dispersal of matter and energy.
a. Entropy may be understood in qualitative	547; 898

terms rather than formal statistical terms	
Although this is not the most rigorous approach	
to entropy the use of qualitative reasoning	
emphasizes that the goal is for students to be	
able to make predictions about the direction of	
entropy change AS° for many typical chemical	
and physical processes	
h Entropy increases when matter is dispersed	547 549
The phase change from solid to liquid or from	547-545
liquid to gas, results in a dispersal of matter in	
the conce that the individual particles become	
more free to move, and generally accurry a	
larger volume. A nether way in which entropy	
increases in this context is when the number of	
increases in this context is when the number of	
individual particles increases when a chemical	
reaction precedes whose stoicniometry results	
In a larger number of product species than	
reacting species. Also, for a gas, the entropy	
Increases when there is an increase in volume	
(at constant temperature), and the gas	
molecules are able to move within a larger	
space.	000
c. Entropy increases when energy is dispersed.	898
From KINI, we know that the distribution of	
kinetic energy among the particles of a gas	
products as the temperature increases. This is	
an increase in the dispersal of energy, as the	
contract more breadly among all of the gas	
spread more broadly among all of the gas	
antrenu increases, the	
Pig Idea E: The laws of thermodynamics does	ibe the acceptic role of an army and explain
and prodict the direction of changes in matter	the the essential role of energy and explain
Enduring Understanding E.E. Chemical or physic	·
enthalpy or an increase in entropy, or both	ical processes are unveriby a decrease in
Learning Objective	Poforonco
$(I \cap E 1)$ The student is able to create or use	E47: 898: 922 Concept Poview Question 20 20
(LO) 5.1 The student is able to cleate of use	547, 856, 555 Concept Review Question 20.50
the dependence of potential energy to the	
distance between atoms and factors such as	
band order (for covalent interactions) and	
polarity (for intermolocular interactions) which	
influence the interaction strength	
$[300 \ 37 \ 1.1, 1.4, 7.2]$	547-549: 932 Skill Building Exercises 20.14
representations and models to prodict the sign	577-579, 352 Skill building Exercises 20.14
and relative magnitude of the entropy change	
associated with chemical or physical	
processes [See SP 1 4]	
processes. [See SP 1.4]	

Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.

Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both.

Essential Knowledge 5.E.2. Some physical or chemical processes involve both a decrease in the internal energy of the components ($\Delta H^{\circ} < 0$) under consideration and an increase in the entropy of those components ($\Delta S^{\circ} > 0$). These processes are necessarily "thermodynamically favored" ($\Delta G^{\circ} < 0$).

Essential Knowledge Component	Reference	
a. For the purposes of thermodynamic analysis	258	
in this course, the enthalpy and the internal		
energy will not be distinguished.		
b. The phrase "thermodynamically favored"	922-924; 927-928	
means that products are favored at equilibrium		
(K > 1\])		
c. Historically, the term "spontaneous" has been	896	
used to describe processes for which $\Delta G^{\circ} < 0$.		
The phrase "thermodynamically favored" is		
used here to avoid misunderstanding and		
confusion that can occur because of the		
common connotation of the term		
"spontaneous," which students may believe		
means "immediately" or "without cause."		
d. For many processes, students will be able to	917	
determine, either quantitatively or qualitatively,		
the signs of both ΔH° and ΔS° for a physical or		
chemical process. In those cases where $\Delta H^{\circ} < 0$		
and $\Delta S^{\circ} > 0$, there is no need to calculate ΔG° in		
order to determine that the process is		
thermodynamically favored.		
e. As noted below in 5.E.5, the fact that a	909	
process is thermodynamically favored does not		
mean that it will proceed at a measurable rate.		
f. Any process in which both ΔH° > 0 and ΔS° <	917	
0 are not thermodynamically favored, ($\Delta G^{\circ} > 0$)		
and the process must favor reactants at		
equilibrium (K < 1). Because the signs of ΔS° and		
ΔH° reverse when a chemical or physical		
process is reversed, this must be the case.		
Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain		
and predict the direction of changes in matter.		
Enduring Understanding 5.E. Chemical or physic	cal processes are driven by a decrease in	
enthalpy or an increase in entropy, or both.		
Learning Objective	Reference	
(LO) 5.13. The student is able to predict	917; 934 Skill Building Exercises 20.55	
whether or not a physical or chemical process is		
thermodynamically favored by determination of		
(either quantitatively or qualitatively) the signs of		
both ΔH° and ΔS° , and calculation or estimation		
of ∆G° when needed. [See SP 2.2, 2.3, 6.4,		
connects to 5.E.3]		

Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.		
Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both		
Essential Knowledge 5.E.3. If a chemical or phy	sical process is not driven by both entropy and	
enthalpy changes, then the Gibbs free energy chap process is thermodynamically favored.	ange can be used to determine whether the	
Essential Knowledge Component	Reference	
a. Some exothermic reactions involve	916-919	
decreases in entropy.		
b. When $\Delta G^{\circ} > 0$, the process is not	912-914	
thermodynamically favorable. When $\Delta G^{\circ} < 0$,		
the process is thermodynamically favorable.		
c. In some reactions, it is necessary to consider	916-917	
both enthalpy and entropy to determine if a		
reaction will be thermodynamically favorable.		
The freezing of water and the dissolution of		
sodium nitrate in water provide good examples		
of such situations.		
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain	
and predict the direction of changes in matter.		
Enduring Understanding 5.E. Chemical or physic	cal processes are driven by a decrease in	
enthalpy or an increase in entropy, or both.		
Learning Objective	Reference	
(LO) 5.14. The student is able to determine	912-914; 934 Skill Building Exercises 20.55	
whether a chemical or physical process is		
thermodynamically favorable by calculating the		
change in standard Gibbs free energy. [See SP		
2.2, connects to 5.E.2]		
Big Idea 5: The laws of thermodynamics descri and predict the direction of changes in matter.	be the essential role of energy and explain	
Enduring Understanding 5.E. Chemical or physic	cal processes are driven by a decrease in	
enthalpy or an increase in entropy, or both.		
Essential Knowledge 5.E.4. External sources of energy can be used to drive change in cases		
where the Gibbs free energy change is positive.		
Essential Knowledge Component	Reference	
a. Electricity may be used to cause a process to	944; 974-979	
occur that is not thermodynamically favored.		
Useful examples are charging of a battery and		
the process of electrolysis.		
b. Light may also be a source of energy for	299-301	
driving a process that in isolation is not		
thermodynamically favored. Useful examples		
are as follows:		
1. The photoionization of an atom, because		
although the separation of a negatively charged		
electron from the remaining positively charged		
ion is highly endothermic, ionization is observed		
to occur in conjunction with the absorption of a		
photon.		
2. The overall conversion of carbon dioxide to		
glucose through photosynthesis, for which		

O2 (g) has AG* = -2880 kJ/mol ronl, yet is observed to occur through a multistep process that is initiated by the absorption of several photons in the range of 400-700 nm. c. A thermodynamically unfavorable reaction may be made favorable by coupling it to a favorable reactions, such as the conversion of ATP to ADP in biological systems. In this context, coupling means the process involves a series of reactions with common intermediates, such that the reactions add up to produce an overall reaction with a negative AG*. 920 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Fonduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable predictions for systems in which coupled reactions that share a common intermediate. 920; 932. Problem B20.2 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate. 920; 936, Comprehensive Problem 20.99 rendult Querestion of Stare a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamical describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive Problem	6\space 6 CO2 (g)+6 H2O(I)→C6H12O6 (aq) +6		
observed to occur through a multistep process that is initiated by the absorption of several photons in the range of 400-700 nm. 920 c. A thermodynamically unfavorable reaction may be made favorable by coupling it to a favorable reaction, such as the conversion of ATP to ADP in biological systems. In this context, coupling means the process involves a series of reactions with common intermediates, such that the reactions adu pt to produce an overall reaction with a negative ΔG'. 920 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Product and predict the direction of enthalpy or an increase in entropy, or both. Learning Objective Reference 920; 922 Problem B20.2 (LQ) 5.15, The student is able to explain how the application of external fyorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LQ) 5.16. The student can use Le Chateller's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamical describe the essential role of energy and explain and predict the direction of changes In matter. Ending Understanding 5.E	O2 (g) has ΔG° = +2880 kJ/mol rxn], yet is		
that is initiated by the absorption of several photons in the range of 400-700 nm. C. A thermodynamically unfavorable reaction may be made favorable to y coupling it to a favorable reaction, such as the conversion of ATP to ADP in biological systems. In this context, coupling means the process involves a series of reactions with a negative ΔG'. Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions are bused to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.8.1] (LO) 5.17. The student can use to 6.8.1] Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in entropy, or both. Essential Knowledge 5.E.S.A thermodynamically favored process may not occur due to kinetic constaints (kinetic vs. thermodynamically favored process are driven by a decrease in entropy, or both. Essential Knowledge 5.E.S.A thermodynamically favored process are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.S.A thermodynamically favored process may not occur due to kinetic constaints (kinetic vs. thermodynamically favored process that are thermodynamically favored process that are thermodynamically favored process to be under kinetic control. The fact that a proc	observed to occur through a multistep process		
photons in the range of 400-700 nm. 920 c. A thermodynamically unfavorable reaction may be made favorable by coupling it to a favorable by coupling it to a favorable reaction, such as the conversion of ATP to ADP in biological systems. In this context, coupling means the process involves a series of reactions with common intermediates, such that the reactions add up to produce an overall reaction with a negative AGS. 920 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 922 Problem B20.2 L(D) 5.15. The student is able to explain how the application of extremal energy sources or the coupling of favorable with unfavorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (L(D) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate thive formation of a produce! [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate theore favorable. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamically favored process are driven by a decrease in enthapy or an increase in entropy, or both. 920; 932; 936; Comprehensive Problem 20.99	that is initiated by the absorption of several		
c. A thermodynamically unfavorable reaction may be made favorable by coupling it to a favorable reaction, such as the conversion of ATP to ADP in biological systems. In this context, coupling means the process involves a series of reactions with common intermediates, such that the reactions add up to produce an overall reaction with a negative AC ⁵ . 920 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Reference Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Reference Learning Objective (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable (see SP 6.2) 920; 922 Problem B20.2 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.4.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamical by favorate to 6.4.2] Sec SP 6.4, thermodynamical by torcesses are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5.A thermodynamically favored, but do not proceed at a measurable reat, are said to be under 'kinetic control. The fact that a process does not procee	photons in the range of 400-700 nm.		
may be made favorable by coupling it to a favorable reaction, such as the conversion of ATP to ADP in biological systems. In this context, coupling means the process involves a series of reactions with common intermediates, such that the reactions add up to produce an overall reaction with a negative AG*. Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how 920; 922 Problem B20.2 the application of external energy sources or 920; 936, Comprehensive Problem 20.9 rinciple to make qualitative predictions for 920; 936, Comprehensive Problem 20.99 rinciple to make qualitative predictions for 920; 936, Comprehensive Problem 20.99 reactions that share a common intermediate, 920; 936, Comprehensive Problem 20.99 product [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 fordictions for systems involving coupled 920; 936, Comprehensive Problem 20.99 reactions that share a common intermediate, 920; 936, Comprehensive Pro	c. A thermodynamically unfavorable reaction	920	
favorable reaction, such as the conversion of ATP to ADP in biological systems. In this context, coupling means the process involves a series of reactions with common intermediates, such that the reactions add up to produce an overall reaction with a negative ΔG°. Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics descri	may be made favorable by coupling it to a		
ATP to ADP in biological systems. In this context, coupling means the process involves a series of reactions with common intermediates, such that the reactions add up to produce an overall reaction with a negative AG*. Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's orghniciple to make qualitative predictions for systems in which coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reaction. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 Iterational the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 Iterations that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 Iterations of thermodynamically favored pr	favorable reaction, such as the conversion of		
context, coupling means the process involves a series of reactions with common intermediates, such that the reactions add up to produce an overall reaction with a negative AG ^c . Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable.[See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quanitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibritum constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge Component and predict the direction of changes in matter. Essenti	ATP to ADP in biological systems. In this		
series of reactions with common intermediates, such that the reaction with a negative A.G ² . Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes that are thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermody	context, coupling means the process involves a		
such that the reactions add up to produce an overall reaction with a negative ΔG°. Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 922 Problem B20.2 (LO) 5.16. The student can use Le Chateller's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive Problem 20.99 Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. 920; 936, Comprehensive Problem 20.99 Essential Knowledge Component and predict the direction of changes in matter. 909 Essential Knowledge Component anut entrodynamically favore	series of reactions with common intermediates,		
overall reaction with a negative ΔG ² . Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chateller's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909; 912-919 processes that are thermodynamical	such that the reactions add up to produce an		
Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Reference Learning Objective Reference (L0) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 932. Problem B20.2 (L0) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 (L0) 5.17. The student can make quantitative predictions for systems involving coupled reactions. That share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.8.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive Problem 20.99 Essential Knowledge 5.E.5. A thermodynamically favored processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge Component Essential Knowledge Component Reference a. Many processes that are thermodynamically favored processes may not occur due to kinetic control. The fact that a pr	overall reaction with a negative ΔG° .		
and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic	Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain	
Enduring Orderstanding 5.E. Chemical of physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge Component a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a no	and predict the direction of changes in matter.		
Initiality of all inferest in entropy, or both. Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge Component a. Many processes that are thermodynamic control. Reference 909 909 slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	enthelpy or an increase in entrepy, or both	cal processes are driven by a decrease in	
Learning Objective Reference (LO) 5.15. The student is able to explain how the application of external energy sources or the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive problem 20.99 Essential Knowledge 5.E.5. A thermodynamical processes are driven by a decrease in enthalpy or an increase in entropy, or both. 920; 936, Comprehensive problem 20.99 Essential Knowledge Component a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	entinalpy of an increase in entropy, of both.	Defense	
(LO) 5.15. The student is able to explain how 920; 922 Problem B20.2 (Lo) 5.16. The student can use to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems in which coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The Iaws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive problem 20.99 Essential Knowledge 5.E.5. A thermodynamical processes are driven by a decrease in enthalpy or an increase in entropy, or both. 920; 936, Comprehensive problem 20.99 Essential Knowledge Component Reference 909 a. Many processes that are thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored process that are thermodynamic			
The application of external energy sources of the coupling of favorable with unfavorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's product. [See SP 6.4, connects to 6.8.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive problem 20.99 Ensential Knowledge 5.E.5. A thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Ensential Knowledge 5.E.5. A thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored do not opcoced at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	(LO) 5.15. The student is able to explain how	920; 922 Problem B20.2	
the couping of ravorable with unravorable reactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] Big Idea 5: The Iaws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under "kinetic control. The fact that a process does not proceed at a noticeable	the application of external energy sources or		
Ireactions can be used to cause processes that are not thermodynamically favorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive Problem 20.99 Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. 920; 936, Comprehensive problem 20.99 Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). 909 Essential Knowledge Component a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	the coupling of favorable with unfavorable		
are not thermodynamically lavorable to become favorable. [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive Problem 20.99 Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in entropy, or both. 920; 936, Comprehensive Problem 20.99 Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). 920; 936, Comprehensive Problem 20.99 Essential Knowledge Component Reference 909 a. Many processes that are thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored on ot occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for	reactions can be used to cause processes that		
Ideotable: [See SP 6.2] 920; 936, Comprehensive Problem 20.99 (LO) 5.16. The student can use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive Problem 20.99 Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in entropy, or both. 920; 936, Comprehensive Problem 20.99 Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). 920; 936, Comprehensive Problem 20.99 Essential Knowledge Component Reference 909 a. Many processes that are thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically solver ates. 909 b. Processes that are thermodynamically favored process that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909	are not thermodynamically lavorable to become		
(LO) 5.16. The student can use Le Challener's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. 920; 936, Comprehensive Problem 20.99 Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in entropy, or both. 920; 936, Comprehensive Problem 20.99 Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). 909 Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909; 912-919 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	avorable. [See SP 6.2]	020: 020 Comprehensive Droblem 20.00	
principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamic control). Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	(LO) 5.16. The student can use Le Chateller's	920; 936, Comprehensive Problem 20.99	
systems in witch coupled reactions that share a common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 (LO) 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamic control). Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909; 912-919 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	principle to make qualitative predictions for		
common intermediate drive formation of a product. [See SP 6.4, connects to 6.B.1] 920; 936, Comprehensive Problem 20.99 fractions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909; 912-919 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	systems in which coupled reactions that share a		
Icol 5.17. The student can make quantitative predictions for systems involving coupled reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] 920; 936, Comprehensive Problem 20.99 Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamically favored process that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909; 912-919 b. Processes that are thermodynamically favored on ot proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	common intermediate drive formation of a		
ILD 9 5.17. The student can make quantitative 920, 936, completionsive Problem 20.99 predictions for systems involving coupled 920, 936, completionsive Problem 20.99 reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909; 912-919 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	(I O) E 17 The student can make quantitative	020: 026 Comprehensive Broklam 20.00	
reactions that share a common intermediate, based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	(LO) 5.17. The student can make quantitative	920, 930, Comprehensive Problem 20.99	
based on the equilibrium constant for the combined reaction. [See SP 6.4, connects to 6.A.2] Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	reactions that share a common intermediate		
bised on the equilibritie constant for the combined reaction. [See SP 6.4, connects to 6.A.2] Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	based on the equilibrium constant for the		
6.A.2] Big Idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	combined reaction [See SP 6.4 connects to		
Oracle in the image of the			
and predict the direction of changes in matter. Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	Big Idoa 5: The laws of thermodynamics descri	bo the essential role of energy and explain	
Enduring Understanding 5.E. Chemical or physical processes are driven by a decrease in enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	Big idea 5: The laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter		
enthalpy or an increase in entropy, or both. Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	Enduring Understanding F.E. Chemical or physical processes are driven by a decrease in		
Essential Knowledge 5.E.5. A thermodynamically favored process may not occur due to kinetic constraints (kinetic vs. thermodynamic control). Essential Knowledge Component Reference a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates. 909 b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable 909; 912-919	entialing orderstanding S.E. Chemical of physical processes are driven by a decrease in		
Essential Knowledge Component Reference a. Many processes that are thermodynamically 909 favored do not occur to any 909 measurable extent, or they occur at extremely 909; 912-919 b. Processes that are thermodynamically 909; 912-919 favored, but do not proceed at a measurable 909; 912-919 rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	Essential Knowledge 5 E 5 A thermodynamical	ly favored process may not occur due to kinetic	
Essential Knowledge ComponentReferencea. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates.909b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable909; 912-919	constraints (kinetic vs. thermodynamic control)		
a. Many processes that are thermodynamically favored do not occur to any measurable extent, or they occur at extremely slow rates.909b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable909	Essential Knowledge Component	Reference	
favored do not occur to any measurable extent, or they occur at extremely slow rates. b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	a Many processes that are thermodynamically	909	
Indefect as instructed using measurable extent, or they occur at extremely slow rates.909; 912-919b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable909; 912-919	favored do not occur to any		
slow rates. b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	measurable extent or they occur at extremely		
b. Processes that are thermodynamically favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	slow rates.		
favored, but do not proceed at a measurable rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	b Processes that are thermodynamically	909.912-919	
rate, are said to be under "kinetic control." High activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	favored, but do not proceed at a measurable		
activation energy is a common reason for a process to be under kinetic control. The fact that a process does not proceed at a noticeable	rate, are said to be under "kinetic control" High		
process to be under kinetic control. The fact that a process does not proceed at a noticeable	activation energy is a common reason for a		
that a process does not proceed at a noticeable	process to be under kinetic control. The fact		
	that a process does not proceed at a noticeable		

rate does not mean that the chemical system is	
at equilibrium. If a process is known to be	
thermodynamically favored (through qualitative	
and/or quantitative analysis of ΔH° and ΔS°),	
and yet it is not occurring at a measurable rate,	
then the conclusion is that the process is under	
kinetic control.	
Big Idea 5: The laws of thermodynamics descri	be the essential role of energy and explain
and predict the direction of changes in matter.	
Enduring Understanding 5.E. Chemical or physic	cal processes are driven by a decrease in
enthalpy or an increase in entropy, or both.	
Learning Objective	Reference
(LO) 5.18. The student can explain why a	920; 931, Concept Review Questions 20.1
thermodynamically favored chemical reaction	
may not produce large amounts of product	
(based on consideration of both initial	
conditions and kinetic effects), or why a	
thermodynamically unfavored chemical reaction	
can produce large amounts of product for	
certain sets of initial conditions. [See SP 1.3,	
7.2 connects to 6 D 1	

Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in a dynamic competition, sensitive to initial conditions and external perturbations.

Enduring Understanding 6.A Chemical equilibrium is a dynamic, reversible state in which rates of opposing processes are equal.

Essential Knowledge 6.A.1. In many classes of reactions, it is important to consider both the forward and reverse reaction.

Essential Knowledge Component	Reference
a. Many readily observable processes are	188-190; 472-478; 747-749
reversible. Examples include evaporating and	
condensing water, absorption of a gas, or	
dissolving and precipitating a salt. Relevant and	
interesting contexts include biological examples	
(binding of oxygen to hemoglobin and the	
attachment of molecules to receptor sites in the	
nose) and environmental examples (transfer of	
carbon between atmosphere and biosphere	
and transfer of dissolved substances between	
atmosphere and hydrosphere).	
b. Dissolution of a solid, transfer of protons in	188-190
acid-base reactions, and transfer of electrons in	
redox reactions are important examples of	
reversible reactions.	
Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These
two processes are in a dynamic competition, se	ensitive to initial conditions and external
perturbations.	
Enduring Understanding 6.A. Chemical equilibri	um is a dynamic, reversible state in which rates of
opposing processes are equal.	Defense
(LO) 6.1. The student is able to, given a set of	188-190; 4/2-4/8; /4/-/49; 201, Concept
experimental observations regarding physical,	Review Questions 4.125
chemical, biological, or environmental	
processes that are reversible, construct an	
explanation that connects the observations to	
the reversibility of the underlying chemical	
reactions or processes. [See SP 6.2]	
Big idea 6: Any bond or intermolecular attractio	on that can be formed can be broken. These
two processes are in a dynamic competition, so	ensitive to initial conditions and external
perturbations.	
endering Understanding 6.A Chemical equilibrit	and is a dynamic, reversible state in which rates of
opposing processes are equal.	
ESSENTIAL KNOWLEDGE D.A.Z. The current state of	a system undergoing a reversible reaction can

quantities of reaction components are quantitatively described by the reaction quotient, Q.

Essential Knowledge Component	Reference
a. Given an initial set of reactant and product	760-763
concentrations, only those sets of	
concentrations that are consistent with the	
reaction stoichiometry can be attained. ICE	
(initial, change, equilibrium) tables are useful for	

determining which sets of concentration values	
are possible.	
b. The reaction quotient, Q, provides a	750-756
convenient measure of the current progress of	
a reaction. Q does not include substances	
whose concentrations are independent of the	
amount of substance, such as for a solid in	
contact with a liquid solution or with a gas, or	
for a pure solid or liquid in contact with a gas.	
c. The value of Q (and so also K) changes when	753-756
a reaction is reversed. When reactions are	
added together through the presence of a	
common intermediate, Q (and so also K) of the	
resulting reaction is a product of the values of Q	
(or K) for the original reactions.	
Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These
two processes are in a dynamic competition, se	ensitive to initial conditions and external
perturbations.	
Enduring Understanding 6.A. Chemical equilibri	um is a dynamic, reversible state in which rates of
opposing processes are equal.	· · · · , · · · · · · · · · · · · · · · · · · ·
Learning Objective	Reference
(LO) 6.2. The student can, given a manipulation	753-756: 786. Problems in Context 17.24
of a chemical reaction or set of reactions (e.g.	
reversal of reaction or addition of two	
reactions) determine the effects of that	
manipulation on Q or K [See SP 2 2]	
Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These
two processes are in a dynamic competition, so	ensitive to initial conditions and external
perturbations.	
Enduring Understanding 6 A Chemical equilibriu	im is a dynamic reversible state in which rates of
opposing processes are equal	
Essential Knowledge 6 A 3 When a system is at	oquilibrium all macroscopic variables, such as
concontrations, partial prossures, and temporature	e de not change over time. Equilibrium results
from an equality between the rates of the forward	Land reverse reactions, at which point $\Omega = K$
Facential Knowledge Component	Poforonco
Essential Knowledge Component	
a. When equilibrium is reached, no observable	747-749
changes occur in the system.	
1. Reactant and product molecules are present.	
2. Concentration of all species remains	
constant.	
b. If the rate of the forward reaction is greater	748-749
than the reverse reaction, there is a net	
conversion of reactants to products. If the rate	
of the reverse reaction is greater than the	
forward reaction, there is a net conversion of	
products to reactants. An equilibrium state is	
reached when these rates balance, at which	
point the progress of reaction, Q, becomes	

c. Comparing Q to K allows the determination of whether the reaction is at equilibrium, or will proceed toward products or reactants to reach equilibrium.	757-758
d. Equilibrium constants can be determined from experimental measurements of the concentrations of the reactants and products at equilibrium.	750-756
e. Given a single reaction, initial concentrations, and K, the concentrations at equilibrium may be predicted.	763-764
f. Graphs of concentration over time for simple chemical reactions can be used to understand the establishment of chemical equilibrium.	751
Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations.	on that can be formed can be broken. These ensitive to initial conditions and external
opposing processes are equal.	unitis a dynamic, reversible state in which rates of
Learning Objective	Reference
(LO) 6.3. The student can connect kinetics to equilibrium by using reasoning about equilibrium, such as Le Chatelier's principle, to infer the relative rates of the forward and reverse reactions. [See SP 7.2]	747-749; 785, Concept Review Questions 17.2
(LO) 6.4 . The student can, given a set of initial conditions (concentrations or partial pressures) and the equilibrium constant, K, use use the tendency of Q to approach K to predict and justify the prediction as to whether the reaction will proceed toward products or reactants as equilibrium is approached. [See SP 2.2, 6.4]	757-758; 786, Concept Review Questions 17.35
(LO) 6.5. The student can, given data (tabular, graphical, etc.) from which the state of a system at equilibrium can be obtained, calculate the equilibrium constant, K. [See SP 2.2, 6.4]	760-762; 788 Problems in Context 17.56
(LO) 6.6. The student can, given a set of initial conditions (concentrations or partial pressures) and the equilibrium constant, K, use stoichiometric relationships and the law of mass action (Q equals K at equilibrium) to determine qualitatively and/or quantitatively the conditions at equilibrium for a system involving a single	750-756; 787 Skill Building Exercises 17.53

Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These	
two processes are in a dynamic competition, se	ensitive to initial conditions and external	
perturbations.		
Enduring Understanding 6.A Chemical equilibriu	Im is a dynamic, reversible state in which rates of	
opposing processes are equal.		
Essential Knowledge 6.A.4. The magnitude of th	e equilibrium constant, K, can be used to	
determine whether the equilibrium lies toward the	e reactant side or product side.	
Essential Knowledge Component	Reference	
a. For many aqueous reactions, K is either very	749	
large or very small, and this may be used to		
reason qualitatively about equilibrium systems.		
b. Particulate representations can be used to	749	
describe the relationship between the numbers		
of reactant and product particles present at		
equilibrium, and the value of the equilibrium		
constant.		
Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These	
two processes are in a dynamic competition, se	ensitive to initial conditions and external	
perturbations.		
Enduring Understanding 6.A. Chemical equilibri	um is a dynamic, reversible state in which rates of	
opposing processes are equal.		
Learning Objective	Reference	
(LO) 6.7. The student is able, for a reversible	749; 789, Problems in Context 17.76	
reaction that has a large or small K, to		
determine which chemical species will have		
very large versus very small concentrations at		
equilibrium. [See SP 2.2, 2.3]		
Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These	
two processes are in a dynamic competition, sensitive to initial conditions and external		
perturbations.		
Enduring Understanding 6.B. Systems at equilibrium are responsive to external perturbations,		
with the response leading to a change in the composition of the system.		
Essential Knowledge 6.B.1. Systems at equilibrium respond to disturbances by partially		
countering the effect of the disturbance (Le Chatelier's principle).		
Essential Knowledge Component	Reference	
a. Le Chatelier's principle can be used to predict	770-780	
the response of a system to the following		
stresses: addition or removal of a chemical		
species, change in temperature, change in		
volume/pressure of a gas phase system, and		
dilution of a reaction system with water or other		
solvent.		
b. Le Chatelier's principle can be used to reason	770-780	
about the effects a stress will have on		
experimentally measurable properties, such as		
experimentally measurable properties, such as		

Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These	
two processes are in a dynamic competition, so perturbations.	ensitive to initial conditions and external	
Enduring Understanding 6.B. Systems at equilib	rium are responsive to external perturbations,	
with the response leading to a change in the com	position of the system.	
Learning Objective	Reference	
(LO) 6.8. The student is able to use Le	770-780; 788 Concept Review Questions 17.62	
Chatelier's principle to predict the direction of		
the shift resulting from various possible stresses		
on a system at chemical equilibrium. [See SP		
1.4, 6.4]		
(LO) 6.9. The student is able to use Le	770-780; 788 Skill Building Exercises 17.69	
Chatelier's principle to design a set of		
conditions that will optimize a desired outcome,		
such as product yield. [See SP 4.2]		
Big Idea 6: Any bond or intermolecular attractio	on that can be formed can be broken. These	
two processes are in a dynamic competition, se	ensitive to initial conditions and external	
perturbations.		
with the response leading to a change in the com	num are responsive to external perturbations,	
Essential Knowledge 6 B 2 A disturbance to a s	vstem at equilibrium causes Q to differ from K	
thereby taking the system out of the original equil	librium state. The system responds by bringing Q	
back into agreement with K thereby establishing	a new equilibrium state	
Essential Knowledge Component	Reference	
a Le Chatelier's principle involves qualitative	770-780	
reasoning that is closely connected to the	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
quantitative approach of 6.A.3.		
b. Some stresses, such as changes in	770-780	
concentration, cause a change in Q. A change		
in temperature causes a change in K. In either		
case, the reaction shifts to bring Q and K back		
into equality.		
Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These		
two processes are in a dynamic competition, se	ensitive to initial conditions and external	
perturbations.		
Enduring Understanding 6.B. Systems at equilib	rium are responsive to external perturbations,	
with the response leading to a change in the com	position of the system.	
Learning Objective	Reference	
(LO) 6.10. The student is able to connect Le	770-780; 790 Comprehensive Problems 17.94	
Chatelier's principle to the comparison of Q to K		
by explaining the effects of the stress on Q and		
K. [See SP 1.4, 7.2]		
Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These	
two processes are in a dynamic competition, sensitive to initial conditions and external		
perturbations.		
Enduring Understanding 6.C. Chemical equilibrium plays an important role in acid-base chemistry		
and in solubility.		
Essential Knowledge 6.C.1. Chemical equilibrium reasoning can be used to describe the proton-		
transfer reactions of acid-base chemistry.		
a. The concentrations of hydronium ion and	/99-802	

hydroxide ion are often reported as pH and	
pOH, respectively.	
b. Water autoionizes with an equilibrium	799-800
constant. Kw. For pure water, $pH = pOH$, and	
this condition is called "neutrality." or a neutral	
solution. At 25°C, pKw = 14, and thus pH and	
pOH add to 14. In pure water at 25°C, pH = pOH	
=7	
c Common strong acids include HCL HBr. HI	165: 801-802
HCIO4 H2SO4 and HNO3 The molecules of	100, 001 002
strong acids completely ionize in solution to	
produce hydronium ions. In other words 100	
percent of the molecules of the strong acid are	
ionized in a solution (assuming that the	
concentration is not extremely high) As such	
the concentration of $H3O+$ in a strong acid	
solution is equal to the initial concentration of	
the strong acid, and thus the pH of the strong	
acid solution is easily calculated	
d Common strong bases include group Land II	165
hydroxides When dissolved in solution strong	
bases completely dissociate to produce	
hydroxide ions. Note that some group II	
hydroxides are slightly soluble in water	
However 100 percent of the dissolved base is	
ionized	
Tornized.	
e Weak acid molecules react with water to	165·795-796·808-811
e. Weak acid molecules react with water to	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un-	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa.	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic acids. The relative magnitudes of Ka's are	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic acids. The relative magnitudes of Ka's are influenced by structural factors such as bond	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic acids. The relative magnitudes of Ka's are influenced by structural factors such as bond strength, solvation, and electronegativity of the	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic acids. The relative magnitudes of Ka's are influenced by structural factors such as bond strength, solvation, and electronegativity of the atom bonded to the labile proton.	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic acids. The relative magnitudes of Ka's are influenced by structural factors such as bond strength, solvation, and electronegativity of the atom bonded to the labile proton. f. The common weak bases include ammonia,	165; 795-796; 808-811
 e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain unionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic acids. The relative magnitudes of Ka's are influenced by structural factors such as bond strength, solvation, and electronegativity of the atom bonded to the labile proton. f. The common weak bases include ammonia, amines and pyridines, other nitrogenous bases, 	165; 795-796; 808-811
 e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain unionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic acids. The relative magnitudes of Ka's are influenced by structural factors such as bond strength, solvation, and electronegativity of the atom bonded to the labile proton. f. The common weak bases include ammonia, amines and pyridines, other nitrogenous bases, and conjugate bases (defined below in q). Weak 	165; 795-796; 808-811
e. Weak acid molecules react with water to transfer a proton to the water molecule. However, weak acid molecules only partially ionize in this way. In other words, only a small percentage of the molecules of a weak acid are ionized in a solution (assuming that the initial concentration is not extremely low). Thus, the concentration of H3O+ does not equal the initial concentration of the molecular acid, and the vast majority of the acid molecules remain un- ionized. A solution of a weak acid thus involves equilibrium between an un-ionized acid and its conjugate base. The equilibrium constant for this reaction is Ka, often reported as pKa. The pH of a weak acid solution can be determined from the initial acid concentration and the pKa. The common weak acids include carboxylic acids. The relative magnitudes of Ka's are influenced by structural factors such as bond strength, solvation, and electronegativity of the atom bonded to the labile proton. f. The common weak bases include ammonia, amines and pyridines, other nitrogenous bases, and conjugate bases (defined below in g). Weak base molecules in aqueous solutions react with	165; 795-796; 808-811

However, only a small percentage of the	
molecules of a weak base in a solution ionize in	
this way (assuming that the initial concentration	
is not extremely low). Thus, the concentration of	
OH- in the solution does not equal the initial	
concentration of the molecular base, and the	
vast majority of the base molecules remain un-	
ionized. A solution of a weak base thus involves	
an equilibrium between an un-ionized base and	
its conjugate acid. The equilibrium constant for	
this reaction is Kb, often reported as pKb. The	
pH of a weak base solution can be determined	
from the initial base concentration and the pKb.	
g. When an acid molecule loses its proton, it	804; 811
becomes a base, since the resultant ion could	
react with water as a base. The acid and base	
are referred to as a conjugate acid-base pair.	
The ionization constants for the acid-base pair	
are related to Kw, and at 25°C, pKa + pKb= 14.	
This relation can be used to reason qualitatively	
about the relative strengths of conjugate acids	
and bases. For example, the conjugate base of	
a strong acid is a much weaker base than H2O,	
and therefore does not react as a base in	
aqueous solutions.	
h. The pH of an acid solution depends on both	799-802
the strength of the acid and the concentration	
of the acid. If we compare solutions of a weak	
acid and of a strong acid at the same pH, we	
find that both solutions have the same	
concentration of H3O-(aq). However, the strong	
acid is completely dissociated into ions in	
solution, whereas the weak acid is only partially	
dissociated into ions in solution. Thus, there are	
vastly more un-ionized acid molecules in the	
weak acid solution than in the strong acid	
solution at the same pH. Thus, to achieve	
solutions of equal pH, the weak acid solution	
must be a much greater concentration than the	
strong acid solution. If we compare solutions of	
a weak acid and of a strong acid of the same	
initial concentration, the concentration of H3O+	
in the strong acid solution is much larger (and	
the pH thus lower) since the strong acid is 100	
percent ionized.	
i. Reactions of acids and bases are called	165-171; 799-802; 823-825
neutralization reactions, and these reactions	
generally have K > 1, and thus can be	
considered to go to completion.	
i. For a mixture of a strong acid with a strong	
base, the neutralization reaction is H3O+ + OH-	
→H2O. The K for this reaction is 10^14 at 25°C,	

so the reaction goes to completion. This allows	
the pH of mixtures of strong acids and bases to	
be determined from the limiting reactant, either	
the acid or the base.	
ii. When a strong base is added to a solution of	
a weak acid, a neutralization reaction occurs:	
conjugate acid + OH-→conjugate base + H2O.	
iii. When a strong acid is added to a solution of	
a weak base, a neutralization reaction occurs:	
conjugate base + H3O+→conjugate acid + H2O.	
j. For a weak acid solution and a strong acid	811-815
solution with the same pH, it takes much more	
base to neutralize the weak acid solution	
because the initial acid concentration is much	
larger. The weak acid solution contains a large	
amount of un-ionized acid molecules.	
Therefore, a weak acid solution resists changes	
in pH for a much greater amount of added base.	
k. A titration technique exists for neutralization	172-173; 853-857
reactions. At the equivalence point, the moles	
of titrant and the moles of titrate are present in	
stoichiometric proportions. In the vicinity of the	
equivalence point, the pH rapidly changes. This	
can be used to determine the concentration of	
the titrant.	
I. As base is added to either a strong acid	172-173; 853-857
solution or a weak acid solution, the H3O+ (aq)	
concentration does not change much. The	
change in pH is less than ~1.5 for the region	
where 10 to 90 percent of the base needed to	
reach the equivalence point has been added.	
m. The pKa of an acid can be determined from	856
the pH at the half equivalence point of the	
titration if the equivalence point is known (i.e.,	
the concentration of both the titrant and analyte	
are known).	
n. For polyprotic acids, the use of titration	862-863
curves to evaluate the number of labile protons	
is important, as well as knowing which species	
are present in large concentrations at any	
region along the curve.	
o. Halfway to the equivalence point, the	853-860
contents of a solution, formed by titrating a	
weak acid, is different from that formed by	
titrating a strong acid. For a strong acid, the	
main species in a solution halfway to the	
equivalence point are H3O+(aq), the anion from	
the acid (e.g., Cl-, NO3-), and the cation from the	
base (e.g., Na+). The total positive charge is	
equal to the total negative charge. For a weak	
acid, the main species in a solution halfway to	
the equivalence point are H3O+(aq), the anion	

from the acid (e.g., CH3COO-, F-), the cation	
from the base (e.g., Na+), and undissociated	
acid, HA. The total positive charge is equal to	
the total negative charge, and [HA] = [A-].	
Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These
two processes are in a dynamic competition, s	ensitive to initial conditions and external
perturbations.	
Enduring Understanding 6.C. Chemical equilibri	um plays an important role in acid-base chemistry
and in solubility.	
Learning Objective	Reference
(LO) 6.11. The student can generate or use a	169; 801-802; 889, Concept Review Questions
particulate representation of an acid (strong or	19.40
weak or polyprotic) and a strong base to explain	
the species that will have large versus small	
concentrations at equilibrium. [See SP 1.1, 1.4,	
2.3]	
(LO) 6.12. The student can reason about the	165; 795-796; 808-811; 839, Comprehensive
distinction between strong and weak acid	Problems 18.155
solutions with similar values of pH, including the	
percent ionization of the acids, the	
concentrations needed to achieve the same pH.	
and the amount of base needed to reach the	
equivalence point in a titration. [See SP 1.4, 6.4,	
connects to 1.E.21	
(LO) 6.13. The student can interpret titration	172-174: 853-860: 889. Concept Review
data for monoprotic or polyprotic acids	Questions 19.43
involving titration of a weak or strong acid by a	
strong base (or a weak or strong base by a	
strong acid) to determine the concentration of	
the titrant and the pKa for a weak acid, or the	
pKb for a weak base. [See SP 5.1, 6.4.	
connects to 1.E.21	
(LO) 6.14. The student can, based on the	853-860: 835. Problems in Context 18.36
dependence of Kw on temperature, reason that	
neutrality requires [H+] = [OH-] as opposed to	
requiring $pH = 7$, including especially the	
applications to biological systems. [See SP 2.2,	
6.2]	
(LO) 6.15. The student can identify a given	165-171; 799-802; 823-825; 199 Skill Building
solution as containing a mixture of strong acids	Exercises 4.72
and/or bases and calculate or estimate the pH	
(and concentrations of all chemical species) in	
the resulting solution. [See SP 2.2, 2.3, 6.4]	
(LO) 6.16. The student can identify a given	165-171; 799-802; 823-825; 841 Comprehensive
solution as being the solution of a monoprotic	Problems 18.186
weak acid or base (including salts in which one	
ion is a weak acid or base), calculate the pH	
and concentration of all species in the solution,	
and/or infer the relative strengths of the weak	
acids or bases from given equilibrium	
concentrations. [See SP 2.2, 6.4]	

(LO) 6.17. The student can, given an arbitrary	165-171; 799-802; 823-825; 199, Skill Building	
mixture of weak and strong acids and bases	Exercise 4.68	
(including polyprotic systems), determine which		
species will react strongly with one another (i.e.,		
with K >1) and what species will be present in		
large concentrations at equilibrium [See SP		
6.4]		
Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These	
two processes are in a dynamic competition, so	ensitive to initial conditions and external	
nerturbations		
Enduring Understanding 6.C. Chemical equilibrium plays an important role in acid-base chemistry		
and in solubility.		
Essential Knowledge 6 C 2 The pH is an important characteristic of aqueous solutions that can		
be controlled with buffers. Comparing pH to pKa	allows one to determine the protonation state of	
a molecule with a labile proton		
Essential Knowledge Component	Reference	
a A huffer solution contains a large	843-850	
concentration of both members in a conjugate		
acid-base pair. The conjugate acid reacts with		
added base and the conjugate base reacts with		
added base and the conjugate base reacts with added acid. The pH of the buffer is related to		
the pKa and the concentration ratio of acid and		
base forms. The buffer capacity is related to		
absolute concentrations of the acid and base		
forms. These relationships can be used both		
quantitatively and qualitatively to reason about		
issues such as the ratio of acid to base forms in		
a given buffer, the impact of this on the buffer		
capacity for added acid or base, and the choice		
of an appropriate conjugate acid-base pair for a		
desired buffer pH (including polyprotic acids)		
b $If [\Lambda_1]/[H\Lambda]$ starts as 1 it is not until the ratio	848-849	
changes by a factor of 10 that a 1 pH unit		
change occurs: adding small amounts of either		
acid or base does not change the ratio much so		
the pH changes are much smaller for buffers		
than unbuffered solutions		
c Weak acids and their conjugate bases make	842-846	
good buffers. Strong acids and bases do not. It		
takes much more base to change the pH of a		
weak acid solution because there is a large		
reservoir of undissociated weak acid		
d By comparing the pH of a solution to the pKa	842-846-851	
of any acid in the solution, the concentration	042-040, 001	
ratio between the acid and base forms of that		
acid (the protonation state) can be determined		
For example, if $nH < nKa$, the acid form has a		
higher concentration than the base form. If pH >		
nKa the base form has a higher concentration		
than the acid form Applications of this		
relationship include the use of acid-base		
indicators the protonation state of protein side		
maleators, the protonation state of protein side		

l abaina (in aludina a aida ar prataina utita multipla		
chains (including acids of proteins with multiple		
labile protons), and the pH required for acid-		
catalyzed reactions in organic chemistry.		
Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These		
two processes are in a dynamic competition, sensitive to initial conditions and external		
perturbations.		
Enduring Understanding 6.C. Chemical equilibrium plays an important role in acid-base chemistry		
and in solubility.		
Learning Objective	Reference	
(LO) 6.18. The student can design a buffer	842-846; 851; 887, Concept Review Questions	
solution with a target pH and buffer capacity by	19.7	
selecting an appropriate conjugate acid-base		
pair and estimating the concentrations needed		
to achieve the desired capacity. [See SP 2.3,		
4.2, 6.4]		
(LO) 6.19. The student can relate the	842-846; 841, Comprehensive Problems 18.186	
predominant form of a chemical species		
involving a labile proton (i.e.,		
protonated/deprotonated form of a weak acid)		
to the pH of a solution and the pKa associated		
with the labile proton. [See SP 2.3, 5.1, 6.4]		
(LO) 6.20. The student can identify a solution	842-846; 888, Concept Review Question 19.10	
as being a buffer solution and explain the buffer		
mechanism in terms of the reactions that would		
occur on addition of acid or base. [See SP 6.4]		
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction	on that can be formed can be broken. These	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so	on that can be formed can be broken. These ensitive to initial conditions and external	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations.	on that can be formed can be broken. These ensitive to initial conditions and external	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility.	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a so	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a so equilibrium.	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a so equilibrium. Essential Knowledge Component	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a so equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a su equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a so equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt.	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a so equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction guotient, Q. is referred to as the	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a so equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction quotient, Q, is referred to as the solubility product, and the equilibrium constant	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibria and in solubility. Essential Knowledge 6.C.3. The solubility of a so equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction quotient, Q, is referred to as the solubility product, and the equilibrium constant for this reaction is denoted as Ksp. the	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibria and in solubility. Essential Knowledge 6.C.3. The solubility of a su equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction quotient, Q, is referred to as the solubility product, and the equilibrium constant for this reaction is denoted as Ksp, the solubility-product constant	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a su equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction quotient, Q, is referred to as the solubility product, and the equilibrium constant for this reaction is denoted as Ksp, the solubility-product constant. b. The solubility of a substance can be	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
 occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, superturbations. Enduring Understanding 6.C. Chemical equilibria and in solubility. Essential Knowledge 6.C.3. The solubility of a superturbation. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction quotient, Q, is referred to as the solubility product, and the equilibrium constant for this reaction is denoted as Ksp, the solubility-product constant. b. The solubility of a substance can be calculated from the Ksp for the dissolution 	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
 occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, superturbations. Enduring Understanding 6.C. Chemical equilibria and in solubility. Essential Knowledge 6.C.3. The solubility of a superturbation. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction quotient, Q, is referred to as the solubility product, and the equilibrium constant for this reaction is denoted as Ksp, the solubility-product constant. b. The solubility of a substance can be calculated from the Ksp for the dissolution reaction. 	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866 867-868	
 occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attractive two processes are in a dynamic competition, seperturbations. Enduring Understanding 6.C. Chemical equilibria and in solubility. Essential Knowledge 6.C.3. The solubility of a sequilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction quotient, Q, is referred to as the solubility product, and the equilibrium constant for this reaction is denoted as Ksp, the solubility-product constant. b. The solubility of a substance can be calculated from the Ksp for the dissolution reaction. This relation can also be used to reason qualitatively about the relative solubility. 	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	
occur on addition of acid or base. [See SP 6.4] Big Idea 6: Any bond or intermolecular attraction two processes are in a dynamic competition, so perturbations. Enduring Understanding 6.C. Chemical equilibri and in solubility. Essential Knowledge 6.C.3. The solubility of a su equilibrium. Essential Knowledge Component a. The dissolution of a substance in a solvent is a reversible reaction, and so has an associated equilibrium constant. For dissolution of a salt, the reaction quotient, Q, is referred to as the solubility product, and the equilibrium constant for this reaction is denoted as Ksp, the solubility-product constant. b. The solubility of a substance can be calculated from the Ksp for the dissolution reaction. This relation can also be used to reason qualitatively about the relative solubility of different substances	on that can be formed can be broken. These ensitive to initial conditions and external um plays an important role in acid-base chemistry ubstance can be understood in terms of chemical Reference 864-866	

c. The free energy change (ΔG°) for dissolution of a substance reflects both the breaking of the forces that hold the solid together and the interaction of the dissolved species with the solvent. In addition, entropic effects must be considered. Qualitative reasoning regarding solubility requires consideration of all of these contributions to the free energy.	547-549	
d. All sodium, potassium, ammonium, and nitrate salts are soluble in water.	159	
e. A salt is less soluble in a solution that has an ion in common with the salt. This has important consequences for solubility of salts in sea water and other natural bodies of water. This phenomenon can be understood qualitatively using Le Chatelier's principle.	866-871	
f. The solubility of a salt will be pH sensitive when one of the ions is an acid or base. Applications include the iron hydroxides of acid- mine drainage and the effects of acid rain on solubility of carbonates. These effects can be understood qualitatively with Le Chatelier's principle.	869-870	
Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in a dynamic competition, sensitive to initial conditions and external perturbations.		
and in solubility.		
Learning Objective	Reference	
(LO) 6.21. The student can predict the solubility of a salt, or rank the solubility of salts, given the relevant Ksp values. [See SP 2.2, 2.3, 6.4]	864-871; 890 Skill Building Exercise 19.75	
 (LO) 6.22. The student can interpret data regarding solubility of salts to determine, or rank, the relevant Ksp values. [See SP 2.2, 2.3, 6.4] 	864-871; 890 Skill Building Exercise 19.74	
(LO) 6.23. The student can interpret data regarding the relative solubility of salts in terms of factors (common ions, pH) that influence the solubility. [See SP 5.1, 6.4]	864-871; 890 Skill Building Exercise 19.78	
(LO) 6.24. The student can analyze the enthalpic and entropic changes associated with the dissolution of a salt, using particulate level interactions and representations. [See SP 1.4, 7.1, connects to 5.E]	864-871; 577, Concept Review Questions 13.29	

Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These two processes are in a dynamic competition, sensitive to initial conditions and external perturbations.

Enduring Understanding 6.D. The equilibrium constant is related to temperature and the difference in Gibbs free energy between reactants and products.

Essential Knowledge 6.D.1. When the difference in Gibbs free energy between reactants and products (ΔG°) is much larger than the thermal energy (RT), the equilibrium constant is either very small (for $\Delta G^\circ > 0$) or very large (for $\Delta G^\circ < 0$). When ΔG° is comparable to the thermal energy (RT), the equilibrium constant is near 1.

Essential Knowledge Component	Reference	
a. The free energy change for a chemical	913	
process in which all of the reactants and		
products are present in a standard state (as		
pure substances, as solutions of 1 molar		
concentration, or as gases at a pressure of 1		
bar, or 1 atm) is given a particular symbol, ΔG° .		
b. The equilibrium constant is related to free	922-924; 927-928	
energy by K = $e^ -\Delta G^{\circ}/RT$. This relation may be		
used to connect thermodynamic reasoning		
about a chemical process to equilibrium		
reasoning about this process. This reasoning		
can be done quantitatively through numerical		
examples or qualitatively through estimation.		
For example, the thermal energy (RT) at room		
temperature is 2.4 kJ/mol. This sets the energy		
scale for relating the enthalpy and entropy		
changes to the magnitude of K, since when the		
magnitude of ΔG° is large compared to the		
thermal energy, then K deviates strongly from 1.		
c. The relation K = $e^{-\Delta G^{\circ}/RT}$ provides a	922-928	
refinement of the statement in 5.E that		
processes with ΔG° < 0 favor products, while		
those with ΔG° > 0favor reactants. If ΔG° < 0,		
then K > 1, while if ΔG° > 0, then K < 1. The		
phrase "favors products" in 5.E is therefore		
more precisely stated as K > 1, while "favors		
reactants" in 5.E is more precisely stated as K <		
1.		
d. Since K is directly related to free energy,	922-928	
when the magnitude of K is of primary interest,		
it is useful to consider whether a reaction is		
exergonic ($\Delta G^{\circ} < 0$) or endergonic ($\Delta G^{\circ} > 0$).		
(Exothermic versus endothermic is the useful		
distinction when the issue of interest is whether		
a reaction releases or consumes energy.) In		
many biological applications, the magnitude of		
K is of central importance, and so the		
exergonic/endergonic distinction is useful.		
Big Idea 6: Any bond or intermolecular attraction that can be formed can be broken. These		
---	--	--
two processes are in a dynamic competition, sensitive to initial conditions and external		
perturbations.		
Enduring Understanding 6.D. The equilibrium constant is related to temperature and the		
difference in Gibbs free energy between reactants and products.		
Learning Objective	Reference	
(LO) 6.25 The student is able to express the	922-928; 934, Skill Building Exercises 20.67	
equilibrium constant in terms of ΔG° and RT and		
use this relationship to estimate the magnitude		
of K and, consequently, the thermodynamic		
favorability of the process. [See SP 2.3]		

Science Practice 1: The student can use representations and models to communicate		
scientific phenomena and solve scientific problems.		
Science Practice Component	Reference	
1.1 The student can create representations and	Test Bank, Chapter 13, Free-Response Question	
models of natural or man-made phenomena		
and systems in the domain.		
1.2 The student can describe representations	Test Bank, Chapter 13, Question 13-10	
and models of natural or man-made		
phenomena and systems in the domain.		
1.3 The student can refine representation and	Test Bank, Chapter 20, Question 20-2	
models of natural or man-made phenomena		
and systems in the domain.		
1.4 The student can use representations and	Test Bank, Chapter 17, Question 17-6	
models to analyze situations or solve problems		
qualitatively and quantitatively.		
1.5 The student can reexpress key elements of	Test Bank, Chapter 8, Question 8-1	
natural phenomena across multiple		
representations in the domain.		
Science Practice 2: The student can use mathematics appropriately.		
Science Practice Component	Reference	
2.1 The student can justify the selection of a	Test Bank, Chapter 2, Question 2-1	
mathematical routine to solve problems.		
2.2 The student can apply mathematical	Test Bank, Chapter 21, Question 21-7	
routines to quantities that describe natural		
phenomena.		
2.3 The student can estimate numerically	Test Bank, Chapter 13, Question 13-1	
quantities that describe natural phenomena.		
Science Practice 3: The student can engage in scientific questioning to extend thinking or to		
guide investigations within the context of the AP course.		
Science Practice Component	Reference	
3.1 The student can pose scientific questions.	Test Bank, Chapter 14, Questions 14-9	
3.2 The student can refine scientific questions.	326, Concept Review Question 7.46	
3.3 The student can evaluate scientific	1033, Comprehension Problem 22.66	
auestions.		

Science Practice 4. The student can plan and implement data conection strategies		
appropriate to a particular scientific question.		
Science Practice Component	Reference	
4.1 The student can <i>justify the selection of the</i>	Test Bank, Chapter 8, Free-Response Question	
kind of data needed to answer a particular		
scientific question.		
4.2 The student can <i>design a plan</i> for collecting	Test Bank, Chapter 2, Question 2-10	
data to answer a particular scientific question.		
4.3 The student can collect data to answer a	202, Comprehensive Problem 4.145	
particular scientific question.		
4.4 The student an <i>evaluate sources of data</i> to	581, Comprehensive Problem 13.142	
answer a particular scientific question.		
Science Practice 5: The student can perform da	ata analysis and evaluation of evidence.	
Science Practice Component	Reference	
5.1 The student can <i>analyze data</i> to identify	Test Bank, Chapter 15, Question 15-7	
patterns or relationships.		
5.2 The student can refine observations and	37, Concept Review Question 1.14	
measurements based on data analysis.		
5.3 The student can evaluate the evidence	88, Concept Review Question 2.35	
provided by data sets in relation to a particular		
scientific question.		
Science Practice 6: The student can work with scientific explanations and theories		
Science Practice Component	Reference	
61 The student can justify claims with evidence	Test Bank Chapter 14 Question 14-4	
6.2 The student can construct evaluations of	Test Bank, Chapter 11, Question 12 2	
benemeng based on evidence produced	Test Bark, Chapter 12, Question 12-2	
through scientific practices		
6.2 The student can articulate the reasons that	Tast Pank Chanter 7 Free Deepense Question	
6.5 The student can drifted the reasons that	rest bank, Chapter 7, Free-Response Question	
scientific explanations and theories are refined		
or replaced.	Test Deals Charten 4 Overstien 4 C	
6.4 The student can <i>make claims are</i>	Test Bank, Chapter I, Question I-6	
predictions about natural phenomena based on		
scientific theories and models.	740.0	
6.5 The student can evaluate alternative	743, Comprehensive Problem 16.110	
scientific explanations.		
Science Practice 7: The student is able to connect and relate knowledge across various		
scales, concepts, and representations in and across domains		
Science Practice Component	Reference	
7.1 The student can <i>connect phenomena and</i>	Test Bank, Chapter 16, Question 16-8	
models across spatial and temporal scales.		
7.2 The student can connect concepts in and	Test Bank, Chapter 17, Question 17-1	
across domain(s) to generalize or extrapolate in		
and/or across enduring understandings and/or		
big ideas.		