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xvi Preface

New to the Ninth Edition

Nearly every chapter has significant changes in this edition. 
To update content and respond to reviewers’ comments, we 
have incorporated the research and ideas of over 140 new cita-
tions, the majority of which (73%) were authored by under-
represented scientists. A particular effort was made to cite 
cutting-edge ecological research by women of color. With 
each edition, we continue toward the goal of making this text 
reflect the true diversity of researchers in the field.

There are over 100 updated examples in this edition, with 
42 new figures, plus improvements or updates to 20 existing 
figures. Dozens of new questions have been written to corre-
spond to the new material and, in response to reviewers, many 
other questions have been re-written to focus more on con-
cepts rather than specific examples. Several new terms have 
also been added in the text and glossary to increase student 
understanding and to reflect the evolving nature of the field. 
We have also continued to expand connections with evolution 
and global change in this edition.

Significant Chapter-by-Chapter Changes

Chapter 1 In response to reviewer’s comments, we have cre-
ated a new section that describes the different tools used by 
ecologists, introducing five new terms including ex situ and 
in situ. There are a total of nine new figures. We have revised 
figure 1 and added microbial ecology as an important frontier. 
We have added new examples from recent literature, including 
about evolution in alpine chipmunks. Questions were updated.

Chapter 2 Three new figures were added, including from 
research on habitat conversion in India. Data on tropical forest 
loss was updated. New examples from publications by women 
of color on soils and on logging of boreal forests were added. 
Wording in several places was clarified in response to reviewers’ 
comments. An explanation of the distinction between weather 
and climate change was added. Improvements were made to 10 
figures, including updating the drought data in figure 2.41 to 
2020 and relating it to fires. Questions were updated.

Chapter 3 Six citations were updated. Sections added on 
United Nations Decade of Ocean Science, microplastics from 
research by Chatterjee and Sharma (2019), and updated several 
examples. One figure was updated with current global ice levels.

Chapter 4 The “applications” section was re-written with 
an updated example of herbicide resistance by Sushila Chaud-
hari and her colleagues, including a new figure. Questions 
were updated, and an existing figure improved.

Chapter 5 A total of 13 new citations, including examples 
with current citations were provided of how global warming 
is affecting ecosystems. New example and figure created to 
describe relationship between water temperature and canopy 
cover. Research on endothermic fish updated, with a new 
figure created and concept of RM endothermy added. Old 
example replaced with new section on comparisons between 
endothermic and ectothermic fish with research by a man of 
color, including another new figure. Questions were updated.

Chapter 6 Section on water-harvesting re-written with updated 
information and a new figure adapted from the review by Guera 
and Bhushan (2020). Added concept of cohesion, per reviewer 

request. Concepts hydrophilic and hydrophobic introduced. Water 
isotope section re-written to clarify per reviewer request, including 
a new figure to explain. Applications section was re-written with 
updated example from the meta-analysis by Evaristo and McDon-
nell (2017). Questions and one figure were updated.

Chapter 7 Information about chemosynthesis was 
expanded and updated with example from Naples, Italy. Pep-
pered moth example re-written and figure replaced with one 
that shows actual photographs and data. Old predation exam-
ples were replaced with those using wolf spiders and coral reef 
fishes research from teams led by women, including new fig-
ures. Questions were updated.

Chapter 8 Opening photo replaced with a more appropri-
ate one, six references updated. Section on nonrandom mat-
ing in plants significantly updated and clarified. Paragraph on 
phylogenies based on genetic analysis added. Updated num-
ber of cooperative breeding species. Updated section on lion 
cooperation with research by Natalia Borrego, a woman of 
color. Questions were updated.

Chapter 9 New example of gorillas replaces an old exam-
ple, and new paragraph added based on the 2020 Living Planet 
Report. One new image. More information about the Breeding 
Bird Survey with updated references. Term endemic added, with 
paragraph replaced with new example of bird from Hawaii. Figure 
on rarity and vulnerability to extinction significantly improved in 
response to reviewer request. Questions were updated.

Chapter 10 Seven citations updated. Research on “killer” 
bees updated with genetics research led by a man of color, 
including updated figure. Added information and example of 
pumas in Patagonia to migration section. Questions updated.

Chapter 11 Introduction re-written with example from 
the COVID-19 pandemic, including new figures. Three fig-
ures updated, including one for current numbers of whooping 
cranes and another with human population growth. Questions 
were updated.

Chapter 12 Paragraph replaced with section on life his-
tory trade-offs, based on ideas by Anurag Agrawal. Updated 
number of species of fish with 2020 data from IUCN. One 
figure improved. Questions were updated.

Chapter 13 Self-thinning section updated with research 
from people of color, and new figure added to better explain 
zero growth isocline, per reviewer request. Existing Lotka-Vol-
terra figure simplified. Competition meta-analysis research 
by Jessica Gurevitch and colleagues added. Extra example of 
competition deleted, per reviewer request. Questions updated.

Chapter 14 Section on research by Utida shortened and 
simplified per reviewer request, including an improvement to 
an existing figure. Questions were re-written to focus on con-
cepts rather than specific research. Two citations updated.

Chapter 16 The concept of a species rarefaction curve is 
introduced. A new example of sampling benthic macroinverte-
brates replaces an old example, work done by a man of color 
that also introduces the concept of DNA barcoding, including 
new figures. Questions were updated.

Chapter 17 Four examples were updated, all from 
research led by underrepresented scientists. This includes a 
new “Applications” example on hyperparasitoids with a new 
figure. Questions were updated.
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completed this edition. I am also deeply grateful for pedagogi-
cal expertise of Julie Morris, who also went above and beyond. 
Thanks also go to the other members of the Sher Lab who 
pitched in with research and/or offered feedback on new fig-
ures for the ninth edition, including Ali Alghamdi,  Violet But-
ler, Rhys Daniels, Alex Goetz, Annie Henry, Alex Kim, Lily 
Malone, Mandy Malone, and Allen Williamson. During the 
development of this  textbook, many colleagues freely shared 
their expertise, reviewed sections, or offered the encour-
agement a project like this needs to keep it going: Anurag 
Agrawal, Brian Buma, Candice Galen, Diane Marshall, Scott 
Nichols, Mayra Vidal, and Dhaval Vyas. I am grateful to Pat-
rick M. Burchfield and Hector Chenge Alvarez for keeping me 
up to date in data and photos of turtles. Special thanks to Jake 
Grossman for sharing his list of Ecologists of Color and Indig-
enous Ecologists.

We would like to especially thank Shannon Murphy for 
her extensive suggestions for the ninth edition, as well as for 
providing us with exciting new case studies to illustrate evolu-
tionary ecology concepts. In addition, we are indebted to the 
many students and instructors who have helped by contacting 
us with questions and suggestions for improvements.

We also wish to acknowledge the skillful guidance and 
work throughout the publishing process given by many profes-
sionals associated with McGraw-Hill Education and Straive 
during this project, including Beth Baugh, Melissa Homer, 
Jodi Rhomberg, and Mithun Kothandath.

We gratefully acknowledge the many reviewers who, over 
the course of the many revisions, have given of their time and 
expertise to help this textbook evolve to its present ninth edi-
tion. Note that some feedback that did not make it into this 
edition will be incorporated into the next one. These review-
ers continue our education, for which we are grateful, and we 
honestly could not have continued the improvement of this 
textbook without them.

Finally, I would like to thank my co-author Manuel 
Molles for entrusting me with this wonderful series, as well as 
my wife Fran and our son Jeremy for their support throughout 
the production of the ninth edition.

Reviewers for the Ninth Edition

Thomas C. Adam University of California, Santa Barbara 
Henry D. Adams Oklahoma State University 
Matthew R. Helmus Temple University 
Jodee Hunt Grand Valley State University 
Jamie Lamit Syracuse University, and State University of New York 
Joseph R. Milanovich Loyola University Chicago 
Shannon Murphy University of Denver 
Wiline Pangle Central Michigan University 
Jessica Peebles-Spencer Ball State University 
Jonathan Shurin University of California San Diego 
John F. Weishampel University of Central Florida 
Lan Xu South Dakota State University

Chapter 18 Section on primary productivity of oceans was 
re-written with updated environmental factors and relating this 
to global change. Map on marine primary productivity has 
been updated. Research on top-down vs. bottom-up updated 
with a new section and figure from meta-analysis research 
conducted by Mayra Vidal, a woman of color, and Shannon 
Murphy. Concept of tri-trophic interactions added. Eleven 
citations were updated, most of which from papers with under-
represented lead authors. Paragraph on role of microorgan-
isms added, per reviewer request. Questions were updated.

Chapter 20 All sections on succession at Glacier Bay sec-
tion completely re-written to reflect more current research led 
by Brian Buma that changes interpretation of those research, 
including new figures. This case study becomes a more inter-
esting story about how understanding can evolve with new 
information. Questions were updated.

Chapter 21 Reference to the 2020 California wildfires 
was added, including a short paragraph about research from 
UC Berkeley. Questions were updated.

Chapter 23 A total of five new figures added, including one 
that refers to the Australian wildfires of 2020. Figure on atmos-
pheric CO

2
 updated with current values. Section on nitrogen 

pollution re-written with more explanation and more current 
research. The forest section was re-written with forest biodiver-
sity data from the FAO 2020 report on the State of the World’s 
Forests and other current research. Corrections made to use of 
Spanish words, per reviewer request. Deforestation in Brazil was 
updated. There were a total of 13 new citations, 9 from under-
represented scientists. Questions were updated.

Online Materials

Available online are suggested readings and answers to concept 
review, chapter review, and critiquing the evidence questions.

Related Title of Interest from McGraw-
Hill Education

Ecology Laboratory Manual, by Vodopich
(ISBN: 978-0-07-338318-7;
MHID: 0-07-338318-X)
Darrell Vodopich, coauthor of Biology Laboratory Man ual, 
has written a new lab manual for ecology. This lab manual 
offers straightforward procedures that are doable in a broad 
range of classroom, lab, and field situations. The procedures 
have specific instructions that can be taught by a teaching 
assistant with minimal experience as well as by a professor.
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2.3 Natural History and  
Geography of Biomes

LEARNING OUTCOMES
After studying this section you should be able to do the following:

	2.10 List the major terrestrial biomes.
	2.11 Describe the climatic differences among the biomes.
	2.12 Contrast the soils typical of the terrestrial biomes.
	2.13 Describe the types of vegetation, animals, and other 

organisms characteristic of the terrestrial biomes.
	2.14 Explain variation in human presence in the various 

terrestrial biomes.

Environmental	 conditions	 shape	 each	 biome’s	 characteristic	
	biology. Early in the twentieth century, many plant ecologists 
studied how climate and soils influence the distribution of veg-
etation. Later ecologists concentrated on other aspects of plant 
ecology. Today, as we face the prospect of global warming (see 
chapter 23), ecologists are once again studying climatic influ-
ences on the distribution of vegetation. International teams of 
ecologists, geographers, and climatologists are exploring the 
influences of climate on vegetation with renewed interest and 
with much more powerful analytical tools. Ecologist Osvaldo 
Sala and others created a predictive model (for more on models, 
see Investigating the Evidence 1 in  Appendix A) using  biological 
and environmental data from each biome to determine where 
biodiversity is at the most risk. While deserts and tundra were 
not expected to change much over the next century, Mediterra-
nean and grassland biomes were found to be highly sensitive to 
anticipated human-caused changes to the environment, includ-
ing but not limited to climate change (Sala et al. 2000). 

In this section, we discuss the climate, soils, and organ-
isms of the earth’s major biomes and how they have been influ-
enced by humans.

Tropical Rain Forest
Tropical	rain	forest is nature’s most extravagant garden (fig. 2.10). 
Beyond its tangled edge, a rain forest opens into a surprisingly 

Figure 2.10 Tropical rain forest in Ecuador. More species live 
within the three-dimensional framework of tropical rain forests than in 
any other terrestrial biome. Elena Kalistratova/Vetta/Getty Images

with increasing depth. Fragmentation and decomposition of 
the organic matter in this horizon are mainly due to the activi-
ties of soil organisms, including bacteria, fungi, and  animals 
ranging from nematodes and mites to burrowing mammals. 
This horizon is usually absent in agricultural soils and 
 deserts. At its deepest levels, the O horizon merges gradually 
with the A horizon.

The A	horizon contains a mixture of mineral  materials, such 
as clay, silt, and sand, and incorporated organic material derived 
from the O horizon. Burrowing animals, such as earthworms, 
mix organic matter from the O horizon into the A horizon. The 
A horizon is generally rich in mineral nutrients. It is gradually 
leached of clays, iron, aluminum, silicates, and humus, which is 
partially decomposed organic matter. These substances slowly 
move down through the soil profile until they are deposited in 
the B horizon.

The B	 horizon contains the clays, humus, and other 
materials that have been transported by water from the A 
horizon. The deposition of these materials often gives the B 
horizon a distinctive color and banding pattern. The B horizon 
gradually merges with the C horizon.

The C	horizon is the deepest layer in our soil pit and the 
only one not typically dominated by plant roots. It consists 
of the weathered parent material, which has been worked by 
the actions of frost, water, and the deeper  penetrating roots of 
plants. Because weathering is incomplete and less intense than 
in the A and B horizons, the C  horizon may contain many 
rock fragments. Under the C horizon, we find unweathered 
parent material, which is often bedrock.

The soil profile gives us a snapshot of soil structure. How-
ever, soil structure is in a constant state of flux as a consequence 
of several influences. Those influences were summarized by 
Hans Jenny (1980) as climate, organisms, topography, parent 
material, and time. Climate affects the rate of  weathering of 
parent materials, the rate of leaching of organic and inorganic 
substances, the rate of erosion and transport of mineral 
 particles, and the rate of decomposition of organic matter. 
 Living organisms, which as we know are also affected by cli-
mate, influence the quantity and quality of organic matter 
added to soil and the rate of soil mixing by burrowing animals. 
Topography affects the rates and direction of water flow and 
patterns of erosion.  Meanwhile, parent materials, such as gran-
ite, volcanic rock, and wind- or water- transported sand, set the 
stage for all other influences. Last is the matter of time. Soil 
age influences soil structure.

As with many aspects of ecology, it is often difficult to 
separate organisms from their environment. The biome discus-
sions that follow provide additional information on soils by 
including aspects of soil structure and chemistry characteristic 
of each biome.

Concept 2.2 Review

 1. The organic horizon is generally absent from agricultural 
soils because tilling (e.g., plowing), buries organic matter. 
Why is an organic horizon generally absent from desert soils?
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Biology

Even though savannas don’t support many trees, their total pri-
mary production across the globe is second only to tropical 
rain forest; a greater proportion of the biological activity on 
the savanna simply takes place near ground level, primarily in 
grasses. Frequent fires have selected for fire resistance in the 
savanna flora. The few tree species on the savanna resist fire 
well enough to be unaffected by low- intensity fires.

The tropical savanna is populated by wandering animals 
that move in response to seasonal and year-to-year variations in 
rainfall and food availability. The wandering consumers of the 
Australian savannas include kangaroos, large flocks of birds, 
and, for about 50,000 years, humans. During droughts, some of 
these Australian species travel thousands of kilometers in search 
of suitable conditions. The African savanna is also home to a 
host of well-known mobile consumers, such as elephants, wilde-
beest, giraffes, zebras, lions, and, again, humans (see fig. 2.16).

Human Influences

Humans are, in some measure, a product of the savanna and 
the savanna, in turn, has been influenced by human activity. 
One of the factors that forged an indelible link between us and 
this biome is fire. Long before the appearance of hominids, 
fire played a role in the ecology of the tropical savanna. Later, 
the savanna was the classroom where early humans observed 
and learned to use, control, and make fire. Eventually, humans 
began to purposely set fire to the savanna, which, in turn, 
helped to maintain and spread the savanna itself. We had 
begun to manipulate nature on a large scale.

Originally, humans subsisted on the savanna by hunting 
and gathering. In time, they shifted from hunting to pastoral-
ism, replacing wild game with domestic grazers and browsers. 
Today, livestock ranching is the main source of livelihood in all 
the savanna regions. In Africa, livestock raising has coexisted 
with wildlife for millennia. In  modern-day sub-Saharan Africa, 
however, the combination of growing human populations, high 
density of livestock, and drought has devastated much of the 
region known as the Sahel (fig. 2.18).

Desert
In the spare desert landscape, sculpted by wind and water, the 
ecologist grows to appreciate geology, hydrology, and climate 
as much as organisms (fig. 2.19). The often repeated descrip-
tion of life in the desert as “life on the edge” betrays an out-
sider’s view. Although primary production is lower than that 
of other biomes, it does not follow that living conditions there 
are necessarily harsh. In their own way, many desert organisms 
flourish on meager rations of water, high temperatures, and 
saline soils. To understand life in the desert, the ecologist must 
see it from the perspective of its natural inhabitants.

Geography

Deserts occupy about 20% of the land surface of the earth. 
Two bands of deserts ring the globe, one at about 30° N  latitude 
and one at about 30° S (fig. 2.20). These bands correspond to 
latitudes where dry subtropical air descends (see fig. 2.4), dry-
ing the landscape as it spreads north and south. Other deserts 
are found either deep in the interior of continents, for example, 
or in the rain shadow of mountains, such as the Great Basin 
Desert of North America as shown in  figure 2.8. Still others are 
found along the cool western coasts of continents, for example, 
the Atacama of South America and the Namib of southwestern 
Africa, where air circulating across a cool ocean delivers a great 
deal of fog to the coast but little rain.

Climate

Environmental conditions vary considerably from one desert 
to another. Some, such as the Atacama and central Sahara, 
receive very little rainfall and fit the stereotype of deserts as 
extremely dry places. Other deserts, such as some parts of the 
Sonoran Desert of North America, may receive nearly 300 mm 
of rainfall annually. Whatever their mean annual rainfall, how-
ever, water loss in deserts due to evaporation and transpiration 
by plants exceeds precipitation during most of the year.

 Figure 2.20 includes the climate diagrams of two hot des-
erts. Notice that drought conditions prevail during all months 
and that during some months average temperatures exceed 30°C. 
Shade temperatures greater than 56°C have been recorded in the 
deserts of North Africa and western North America. However, 
some deserts can be bitterly cold. For example, average winter 
temperatures at Dzamiin Uuded, Mongolia, in the Gobi Desert 
of central Asia sometimes fall to −20°C (see fig. 2.20).

Soils

Desert plants and animals can turn this landscape into a 
mosaic of diverse soils. Desert soils are generally so low in 
organic matter that they are sometimes classified as lithosols, 
which means stone or mineral soil. However, the soils under 
desert shrubs often contain large amounts of organic matter 
and form islands of fertility. Desert animals can also affect 
soil properties. For example, in North America, kangaroo rats 
change the texture and elevate the nutrient content of surface 
soils by burrowing and hoarding seeds. In Middle Eastern des-
erts, blind mole rats and isopods have been shown to strongly 
influence soil properties.

Figure 2.18 Domestic livestock, such as these cattle on an  
African savanna, have had a major impact on tropical savannas around 
the world. Syda Productions/Shutterstock
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Desert soils, particularly those in poorly drained valleys 
and lowlands, may contain high concentrations of salts. Salts 
accumulate in these soils as water evaporates from the soil 
surface, leaving behind any salts that were dissolved in the 
water. Salt accumulation increases the aridity of the desert 
 environment by making it harder for plants to extract water 
from the soils. As desert soils age they tend to form a cal-
cium carbonate–rich hardpan horizon called caliche. The 
extent of caliche formation has proved a useful tool for aging 
these soils.

Biology

The desert landscape presents an unfamiliar face to the vis-
itor from moist climates. Plant cover is absent from many 
places, exposing soils and other geologic features. Where 
there is plant cover, it is sparse. The plants themselves look 
unfamiliar. Desert vegetation often cloaks the landscape in a 
gray-green mantle. This is because many desert plants protect 
their photosynthetic surfaces from intense sunlight and reduce 
evaporative water losses with a dense covering of plant hairs. 
Other plant adaptations to drought include small leaves, pro-
ducing leaves only in response to rainfall and then dropping 
them during intervening dry periods, or having no leaves at all 
(fig. 2.21). Some desert plants avoid drought almost entirely 
by remaining dormant in the soil as seeds that germinate and 
grow only during infrequent wet periods.

In deserts, animal abundance tends to be low but diversity 
can be high. Most desert animals use behavior to avoid environ-
mental extremes. In summer, many avoid the heat of the day by 
being active at dusk and dawn or at night. In winter, the same 
species may be active during the day. Animals (as well as plants) 
use body orientation to minimize heat gain in the summer.

Human Influences

Desert peoples have flourished where nature is stingiest. 
Compared to true desert species, however, humans are 
profligate water users. Consequently, human populations 
in deserts concentrate at oases and in river valleys. Many 
desert landscapes that once supported irrigated agriculture 
now grow little as a result of salt accumulation in their soils 
(Wang et al. 2019).

The desert is the one biome that, because of human activ-
ity, is increasing in area. Humanity’s challenge is to stop the 
spread of deserts that comes at the expense of other biomes 
and to establish a balanced use of deserts that safeguards their 
inhabitants, human and nonhuman alike.

Woodland and Shrubland
Woodlands and shrublands occur widely in temperate 
regions. Some are found in the interior of continents and 
others in coastal regions (see  fig. 2.1a). Within the woodland/
shrubland biome is a particular climate called Mediterra-
nean, although it can be found in many different regions of 
the globe. The Mediterranean	woodland	and	shrubland climate 
was the climate of the classical Greeks and the coastal Native 

Figure 2.21 Similar environments have selected for nearly iden-
tical traits in unrelated desert plants: (a) cactus in North America, 
(b) Euphorbia in Africa. (a) Lucky-photographer/Shutterstock; (b) Natphotos/

Digital Vision/Getty Images

(a)

(b)

American tribes of Old California. The mild temperate cli-
mate experienced by these cultures was accompanied by high 
biological richness (fig. 2.22). The richness of the Mediterra-
nean woodland flora is captured by a folk song from the Medi-
terranean region that begins: “Spring has already arrived. All 
the countryside will bloom; a feast of color!” To this visual 
feast, Mediterranean woodlands and shrublands add a chorus 
of birdsong and the smells of aromatic plants, including rose-
mary, thyme, and laurel.
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Figure 2.24 These shrubs found in South Africa’s fynbos have  
the characteristic leaves that help prevent water loss from this 
Mediterranean- type climate. Anna Sher

 Mediterranean landscapes. Elsewhere, these landscapes, 
under careful stewardship, have maintained their integrity for 
thousands of years.

Biology

The plants and animals of Mediterranean woodlands and 
shrublands are highly diverse and, like their desert neighbors, 
show several adaptations to drought. Trees and shrubs are typi-
cally evergreen and have small, tough leaves, which conserve 
both water and nutrients ( fig. 2.24). Many plants of Mediterra-
nean woodlands and shrublands have well-developed, mutual-
istic relationships with microbes that fix atmospheric nitrogen.

The process of decomposition is greatly slowed during the 
dry summer and then started again with the coming of fall and 
winter rains. Curiously, this intermittent decomposition may 
speed the process sufficiently so that average rates of decom-
position are comparable to those in temperate forests.

Fire, a common occurrence in Mediterranean woodlands 
and shrublands, has selected for fire-resistant plants. Many 
Mediterranean woodland trees have thick, fire-resistant bark. 
In contrast, many shrubs in Mediterranean woodlands are rich 
in oils and burn readily but resprout rapidly. Most herbaceous 
plants grow during the cool, moist season and then die back in 
summer, thus avoiding both drought and fire.

Human Influences

Human activity has had a substantial influence on the structure 
of landscapes in Mediterranean woodlands and shrublands. 
For example, the open oak woodlands of southern Spain and 
Portugal are the product of an agricultural management system 
that is thousands of years old. In this system, cattle graze on 
grasses, pigs consume acorns produced by the oaks, and cork 
is harvested from cork oaks as a cash crop. Selected areas are 
planted in wheat once every 5 to 6 years and allowed to lie fal-
low the remainder of the time. This system of agriculture, which 

emphasizes low-intensity cultivation and long-term sustainabil-
ity, may offer clues for sustainable agriculture in other regions.

High population densities coupled with a long history 
of human occupation have left an indelible mark on Medi-
terranean woodlands and shrublands. Early human impacts 
included clearing forests for agriculture, setting fires to con-
trol woody species and encourage grass, harvesting brush for 
fuel, and grazing and browsing by domestic livestock. Today, 
Mediterranean woodlands and shrublands around the world 
are being covered by human habitations.

Temperate Grassland
In their original state, temperate	 grasslands extended unbro-
ken over vast areas (fig. 2.25). Standing in the middle of 

Figure 2.25 Bison, native grazers of the temperate grasslands of North America. MedioImages/PunchStock
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of Japan, eastern China, Korea, and eastern Siberia. In west-
ern Europe, temperate forests extended from southern Scandi-
navia to northwestern Iberia and from the British Isles through 
eastern Europe. North American temperate forests are found 
from the Atlantic seacoast to the Great Plains and reappear 
on the West Coast as temperate coniferous forests that extend 
from northern California through southeastern Alaska. In the 
Southern Hemisphere, temperate forests are found in southern 
Chile, New Zealand, South Africa, and southern Australia.

Climate

Temperate forests, which may be either coniferous or decidu-
ous, occur where temperatures are not extreme and where 
annual precipitation averages anywhere from about 650 mm 
to over 3,000 mm (see fig. 2.29). These forests generally 
receive more winter precipitation than temperate grasslands. 
Deciduous trees usually dominate temperate forests, where the 
growing season is moist and at least 4 months long. In decidu-
ous forests, winters last from 3 to 4 months. Though snow-
fall may be heavy, winters in deciduous forests are relatively 
mild. Where winters are more severe or the summers drier, 
conifers are more abundant than deciduous trees. The temper-
ate coniferous forests of the Pacific Coast of North America 
receive most of their precipitation during fall, winter, and 
spring and are subject to summer drought. Summer drought 
is shown clearly in the climate diagram for the H. J. Andrews 
Forest of Oregon (see fig. 2.29). The few deciduous trees in 
these  coniferous forests are largely restricted to streamside 
 environments, where water remains abundant during the 
drought-prone  growing season.

Temperate grasslands once supported huge herds of 
roving herbivores: bison and pronghorns in North America 
(see fig. 2.25) and wild horses and Saiga antelope in  Eurasia. 
As in the open sea, the herbivores of the open grassland 
banded together in social groups, as did their attendant preda-
tors, the steppe and prairie wolves. The smaller, inconspicu-
ous animals, such as grasshoppers and mice, were even more 
numerous than the large herbivores.

Human Influences

The first human populations on temperate grasslands were 
nomadic hunters. Next came the nomadic herders. Later, with 
their plows, came the farmers, who broke the sod and tapped 
into fertile soils built up over thousands of years. Under the 
plow, temperate grasslands have produced some of the most 
fertile farmlands on earth and fed much of the world (fig. 2.27). 
However, much of this primary production depends on sub-
stantial additions of inorganic fertilizers, and we are “mining” 
the fertility of prairie soils. Amy Molotoks and colleagues used 
a world soil database combined with land cover maps from sat-
ellite imagery plus data collected in the field to determine that 
59% of soil organic carbon is lost when grassland is converted 
to cropland (Molotoks et al. 2018). In addition, the more arid 
grasslands, with their frequent droughts, do not appear capa-
ble of supporting sustainable farming.

Temperate Forest
For many, nothing epitomizes “nature” as do the diverse and 
majestic deciduous trees that characterize 	temperate	 forest 
(fig. 2.28). In the subdued light of this cool, moist realm, a 
world of mushrooms and decaying leaves, you can stand beside 
the giants of the biosphere.

Geography

Temperate forest can be found between 30° and 55° latitude. 
However, the majority of this biome lies between 40° and 50° 
(fig. 2.29). In Asia, temperate forest originally covered much 

Figure 2.27 Once the most extensive biome on earth, temperate 
grasslands have been largely converted to agriculture.  
Dave Reede/Getty Images

Figure 2.28 A mixed deciduous and coniferous temperate forest 
in New England. This temperate forest in early autumn gives just a hint 
of the dramatic display of color that occurs each autumn in the New 
England countryside, where farms and towns occupy areas cleared of 
 forest. Songquan Deng/Shutterstock
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Figure 2.30 Key decomposers in temperate forests. The massive wood deposited on the floor of temperate forests is broken down by fungi, which are 
essential to the addition of organic matter to forest soils and to the cycling of nutrients in forest ecosystems. Photo 24/Stockbyte/Brand X Pictures/Getty Images

Figure 2.31 Boreal forests, such as this one in Alaska, are 
 dominated by a few species of conifer trees. AlxYago/Shutterstock

of different ages, shaped by wind, fire, and other environmental 
forces, host diverse communities of insects, birds, rodents, and 
other animals. The understory may be open, with patches of 
fruit-bearing shrubs, or dense with young saplings. The summer 
forest is colored green, gray, and brown; the autumn adds bril-
liant splashes of yellow and red; and the long northern winter 
turns the boreal forest into a land of white solitude.

Geography

Boreal comes from the Greek word for north, reflecting the fact 
that boreal forests are confined to the Northern Hemisphere. 
Boreal forests extend from Scandinavia, through European 

 Russia, across Siberia, to central Alaska, and across central 
Canada in a band between 50° and 65° N latitude (fig. 2.32). 
These forests are bounded in the south by either temperate 
forests or temperate grasslands and in the north by tundra. 
 Fingers of boreal forest follow the Rocky Mountains south 
along the spine of North America, and patches of boreal for-
est reappear on the mountain slopes of south-central  Europe 
and Asia.

Climate

Boreal forest is found where winters are too long, usually 
longer than 6 months, and the summers too short to sup-
port temperate forest (see fig. 2.32). The boreal forest zone 
includes some fairly moderate climates, such as that at Umeå, 
Sweden, where the climate is moderated by the nearby  Baltic 
Sea. However, boreal forests are also found in some of the 
most variable  climates on earth. For instance, the temperature 
at Verkhoyansk, Russia, in central Siberia, ranges from about 
−70°C in winter to over 30°C in summer, an annual tempera-
ture range of over 100°C! Precipitation in the boreal forest is 
moderate, ranging from about 200 to 600 mm. Yet, because of 
low temperatures and long winters, evaporation rates are low, 
and drought is infrequent. During droughts, however, forest 
fires can devastate vast areas of boreal forest.

Soils

Boreal forest soils tend to be of low fertility, thin, and acidic. 
Low temperatures and low pH impede decomposition of plant 
litter and slow the rate of soil building. As a consequence, 
nutrients are largely tied up in a thick layer of plant litter that 
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eventually gave way to domestication and herding. In northern 
Canada and Alaska, some Native Americans still rely on wild 
caribou for much of their food, and northern peoples have 
long harvested the berries that grow in boreal forests.

For most of history, human intrusion in the boreal forest 
was relatively light. More recently, however, harvesting of both 
animals and plants has become intense. In a review of the cur-
rent literature, Tähti Pohjanmies and her colleagues found that 
research consistently shows that logging in boreal forests has 
long-reaching ecological impacts, including changing climate 
(Pohjanmies et al. 2017). For example, boreal forests strongly 
affect global climate by sequestering carbon in the soil; this 
carbon can be released into the atmosphere when soils are dis-
turbed during logging (fig 2.33).

Tundra
Follow the caribou north as they leave their winter home in 
the boreal forest and you eventually reach an open landscape 
of mosses, lichens, and dwarf willows, dotted with small ponds 
and laced with clear streams (fig. 2.34). This is the tundra. If it 
is summer and surface soils have thawed, your progress will be 
cushioned by a spongy mat of lichens and mosses and punctu-
ated by sinking into soggy accumulations of peat. The air will 
be filled with the cries of nesting birds that have come north to 
take advantage of the brief summer abundance of their plant 

Figure 2.33 Deforestation in boreal forest. Comstock Images/Alamy 

Stock Photo

Figure 2.34 Alaskan tundra. Tundra vegetation is mostly low-growing mosses, lichens, perennial herbaceous plants, and dwarf willows and 
birches. ajliikala/Getty Images
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Figure 2.36 Freezing and thawing form netlike polygons on the 
 surface of the tundra as seen here in an aerial photo of Alaska. Fletcher &  

Baylis/Science Source

Figure 2.37 Mount Kilimanjaro, East Africa, where environmental conditions vary from tropical savanna at the base of the mountain to ice fields 
at its peak. Getty Images

Human Influences

Until recently, human presence in the tundra was largely lim-
ited to small populations of hunters and nomadic herders. As 
a consequence, the tundra has been viewed as one of the last 

pristine areas of the planet. Recently, however, human intru-
sion has increased markedly. This biome has been the focus of 
intense oil exploration and extraction.  Airborne pesticides and 
radionuclides, which originate in distant human population cen-
ters, have been deposited on the tundra, sometimes with devas-
tating results. Mercury, an element that is highly toxic to people 
and other animals, has increased dramatically in arctic lakes in 
recent years due to industrial pollution. This Hg can accumu-
late in fish, making it toxic to eat (Hudelson et al. 2019); this 
includes species that are eaten locally as well as for export. Such 
revelations have shattered the illusion of the tundra as an iso-
lated biome and the last earthly refuge from human disturbance.

Mountains: A Diversity of Biomes
We now shift our attention to mountains, which are not a 
biome. As we explained earlier in this chapter, because of the 
environmental changes that occur with altitude, several biomes 
may be found on a single mountain, depending on elevation 
and which side of the mountain one is on. We include moun-
tains here because they often introduce unique environmental 
conditions and organisms to regions around the globe.

Mountains capture the imagination as places of geologi-
cal, biological, and climatic diversity (fig. 2.37). Mountains 
have long offered refuge for distinctive flora and fauna and 
humans alike. Like oceanic islands, they offer unique insights 
into evolutionary and ecological processes.
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seasonal	variation	in	climate. Because the earth is a sphere, 
the sun’s rays are most concentrated at the latitude where the 
sun is directly overhead. This latitude changes with the sea-
sons because the earth’s axis of rotation is not perpendicular 
to its plane of orbit about the sun but is tilted approximately 
23.5° away from the perpendicular. The sun is directly over-
head at the tropic of Cancer, at 23.5° N latitude during the 
northern summer solstice. During the northern winter sol-
stice the sun is directly overhead at the tropic of Capricorn, 
at 23.5° S latitude. The sun is directly overhead at the equa-
tor during the spring and autumnal equinoxes. During the 
northern summer the Northern Hemisphere is tilted toward 
the sun and receives more solar energy than the  Southern 
Hemisphere. During the northern winter, the North-
ern   Hemisphere is tilted away from the sun and the Southern 
Hemisphere receives more solar energy.

Heating of the earth’s surface and atmosphere drives 
atmospheric circulation and influences global patterns of pre-
cipitation. As the sun heats air at the equator, it expands and 
rises, spreading northward and southward at high altitudes. 
This high-altitude air cools as it spreads toward the poles, 
eventually sinking back to the earth’s surface. Rotation of the 
earth on its axis breaks up atmospheric circulation into six 
major cells, three in the Northern Hemisphere and three in the 
Southern Hemisphere. These six circulation cells correspond 
to the trade winds north and south of the equator, the west-
erlies between 30° and 60° N or S latitude, and the polar east-
erlies above 60° latitude. These prevailing winds do not blow 
directly south because of the Coriolis effect.

As air rises at the tropics, it cools, and the water vapor 
it contains condenses and forms clouds. Precipitation from 
these clouds produces the abundant rains of the tropics. Dry 
air blowing across the lands at about 30° latitude produces the 
great deserts that ring the globe. When warm, moist air flow-
ing toward the poles meets cold, polar air, it rises and cools, 
forming clouds that produce the precipitation associated with 
temperate environments. Complicated differences in average 
climate can be summarized using a climate diagram.

While	 terrestrial	biome	distribution	 is	strongly	associated	
with	 latitude,	 biomes	 are	 also	 influenced	by	microclimate	 and	
soil	 type.	 Biomes do not exist in simple bands determined 
solely by latitude; this is because topography and geology 
also play a role. Mountain ranges create different temperature 
zones based on elevation as well as microclimates due to the 
rain shadow effect. Just as rising air in the tropics induces pre-
cipitation, so too does moist air hitting the side of a mountain, 

resulting in forests on one side and desert on the other. Soil 
types can also dramatically affect distributions of plant types. 

Terrestrial biomes are built upon a foundation of soil, a 
vertically stratified and complex mixture of living and nonliv-
ing material. Most terrestrial life depends on soil. Soils are 
generally divided into O, A, B, and C horizons. The O horizon 
is made up of freshly fallen organic matter, including leaves, 
twigs, and other plant parts. The A horizon contains a mix-
ture of mineral materials and organic matter derived from the 
O horizon. The B horizon contains clays, humus, and other 
materials that have been transported from the A horizon. The 
C horizon consists of weathered parent material.

The	 geographic	 distribution	 of	 terrestrial	 biomes	 corre-
sponds	closely	to	variation	in	climate,	especially	prevailing	tem-
perature	and	precipitation. The major terrestrial biomes and 
climatic regimes are: tropical rain forest: warm; moist; low sea-
sonality; infertile soils; exceptional biological diversity and 
intricate biological interactions. Tropical dry forest: warm and 
cool seasons; seasonally dry; biologically rich; as threatened 
as tropical rain forest. Tropical savanna: warm and cool sea-
sons; pronounced dry and wet seasons; impermeable soil lay-
ers; fire important to maintaining dominance by grasses; still 
supports high numbers and diversity of large animals. Desert: 
hot or cold; dry; unpredictable precipitation; low primary 
production but often high diversity; organisms well adapted 
to climatic extremes. Mediterranean woodland and shrubland: 
cool, moist winters; hot, dry summers; low to moderate soil 
fertility; organisms adapted to seasonal drought and peri-
odic fires. Temperate grassland: hot and cold seasons; peak 
rainfall coincides with growing season; droughts sometimes 
lasting several years; fertile soils; fire important to maintain-
ing dominance by grasses; historically inhabited by roving 
bands of herbivores and predators. Temperate forest: moder-
ate, moist winters; warm, moist growing season; fertile soils; 
high primary production and biomass; dominated by decidu-
ous trees where growing seasons are moist, winters are mild, 
and soils fertile; otherwise dominated by conifers. Boreal 
forest: long, severe winters; climatic extremes;  moderate pre-
cipitation; infertile soils; permafrost; occasional fire; exten-
sive forest biome, dominated by conifers. Tundra: cold; low 
 precipitation; short, soggy summers; poorly developed soils; 
 permafrost;  dominated by low vegetation and a variety of 
animals adapted to long, cold winters; migratory animals, 
especially birds, make seasonal use. Mountains: temperature, 
precipitation, soils, and organisms shift with elevation; moun-
tains are climatic and biological islands.
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Review Questions

Design elements: (Yellowstone thermal pool):©flickrRF/Getty Images
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rain shadow effect 17

solifluction 36
tropical dry  

forest 21

tundra 35
weather 40

between high altitude at midlatitudes and high altitude at high 
latitudes?

 7. How is the physical environment on mountains at midlatitudes 
similar to that in tropical alpine zones? How do these environ-
ments differ?

 8. English and other European languages have terms for four sea-
sons: spring, summer, autumn, and winter. This vocabulary sum-
marizes much of the annual climatic variation at midlatitudes 
in temperate regions. Are these four seasons useful for sum-
marizing annual climatic changes across the rest of the globe? 
Look back at the climate diagrams presented in this chapter. 
How many seasons would you propose for each of these environ-
ments? What would you call these seasons?

 9. Biologists have observed much more similarity in species compo-
sition among boreal forests and among areas of tundra in Eurasia 
and North America than among tropical rain forests or among 
Mediterranean woodlands around the globe. Can you offer an 
explanation of this contrast based on the global distributions of 
these biomes shown in figures 2.11, 2.23, 2.32, and 2.35?

 10. To date, which biomes have been the most heavily affected by 
humans? Which seem to be the most lightly affected? How 
would you assess human impact? How might these patterns 
change during this century? (You may need to consult the dis-
cussion of human population growth in the Applications section 
of chapter 11.)

 1. Plants form the foundation of most terrestrial ecosystems. Pick a 
biome from this chapter and explain how the functional traits of 
plants from that biome could affect the evolution of other organ-
isms in that biome. 

 2. Draw a typical soil profile, indicating the principal layers, or hor-
izons. Describe the characteristics of each layer.

 3. Describe global patterns of atmospheric heating and circula-
tion. What mechanisms produce high precipitation in the trop-
ics? What mechanisms produce high precipitation at temperate 
latitudes? What mechanisms produce low precipitation in the 
tropics?

 4. Use what you know about atmospheric circulation and seasonal 
changes in the sun’s orientation to earth to explain the highly 
seasonal rainfall in the tropical dry forest and tropical savanna 
biomes. (Hint: Why does the rainy season in these biomes come 
during the warmer months?)

 5. We showed how the rain shadow effects biome distribution in 
the western United States Where else in the world can you see 
the impact of a rain shadow? Do you think that the height of the 
mountains creating it matters? Why or why not?

 6. Some of the earliest studies of the geographic distribution of veg-
etation suggested a direct correspondence between latitudinal 
and altitudinal variation in climate, and our discussion in this 
chapter stressed the similarities in climatic changes with altitude 
and latitude. Now, what are some major climatic differences 
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