
Table of Contents
About the Authors ..4
Video from the Authors5
Brief Contents..6
Contents .. 7
Preface .. 10
McGraw Hill Connect® 18
Sample Chapter 1 .. 23
Sample Chapter 3 ... 78

Modern Business
Analytics
Taddy | Hendrix | Harding

Confirming PagesConfirming Pages

tad71671_fm_i-xxii.indd iii 01/13/22 10:24 PMtad71671_fm_i-xxii.indd iii 01/13/22 10:24 PM

MODERN BUSINESS
ANALYTICS
Practical Data Science for Decision-Making

Matt Taddy
Amazon, Inc.

Leslie Hendrix
University of South Carolina

Matthew C. Harding
University of California, Irvine

Confirming PagesConfirming Pages

tad71671_fm_i-xxii.indd iv 01/13/22 10:24 PMtad71671_fm_i-xxii.indd iv 01/13/22 10:24 PM

MODERN BUSINESS ANALYTICS

Published by McGraw Hill Education, 1325 Avenue of the Americas, New York, NY 10019. Copyright
©2023 by McGraw Hill Education. All rights reserved. Printed in the United States of America. No part of
this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written consent of McGraw Hill Education, including, but not limited to,
in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 LKV 27 26 25 24 23 22

ISBN 978-1-264-07167-8 (SE)
MHID 1-264-07167-1 (SE)
ISBN 978-1-264-07165-4 (Loose leaf)
MHID 1-264-07165-5 (Loose leaf)

Portfolio Manager: Rebecca Olson
Product Development Manager: Michele Janicek
Product Developer: Christina Verigan
Digital Product Developer: Katherine Ward
Marketing Manager: Harper Christopher
Content Project Managers: Amy Gehl (Core), Emily Windelborn (Assessment)
Buyer: Laura Fuller
Design: Matt Diamond
Content Licensing Specialist: Melissa Homer
Cover Image Credit: MirageC/Getty Images
Compositor: Straive

Library of Congress Cataloging-in-Publication Data

The Internet addresses listed in the text were accurate at the time of publication. The inclusion of a website
does not indicate an endorsement by the authors or McGraw Hill Education, and McGraw Hill Education
does not guarantee the accuracy of the information presented at these sites.

mheducation.com/highered

Confirming Pages

tad71671_fm_i-xxii.indd v 01/13/22 10:24 PM

v

ABOUT THE AUTHORS

Matt Taddy is the author of Business Data Science
(McGraw Hill, 2019). From 2008–2018 he was a professor of econo-
metrics and statistics at the University of Chicago Booth School of
Business, where he developed their Data Science curriculum. Prior
to and while at Chicago Booth, he has also worked in a variety of
industry positions including as a principal researcher at Microsoft and
a research fellow at eBay. He left Chicago in 2018 to join Amazon as
a vice president.

Leslie Hendrix is a clinical associate professor in the
Darla Moore School of Business at the University of South Carolina.
She received her PhD in statistics in 2011 and a BS in mathematics
in 2005 from the University of South Carolina. She has received two
university-wide teaching awards for her work in teaching business ana-
lytics and statistics courses and is active in the research and teaching
communities for analytics. She was instrumental in founding the Moore
School’s newly formed Data Lab and currently serves as the assistant
director.

Matthew C. Harding is a professor of economics
and statistics at the University of California, Irvine. He holds a PhD
from MIT and an M.Phil. from Oxford University. Dr. Harding conducts
research on econometrics, consumer finance, health policy, and energy
economics and has published widely in leading academic journals. He
is the founder of Ecometricx, LLC, a big data and machine learning
consulting company, and cofounder of FASTlab.global Institute, a
nonprofit focusing on education and evidence-based policies in the
areas of fair access and sustainable technologies.

Courtesy of Matthew
C. Harding

Courtesy of Leslie Hendrix

Courtesy of Matt Taddy

Click below to watch a video for the author:
Modern Business Analytics

https://youtu.be/PREg87lW_E8
https://www.youtube.com/watch?v=PREg87lW_E8

Confirming Pages

tad71671_fm_i-xxii.indd vi 01/13/22 10:24 PM

vi

BRIEF CONTENTS

About the Authors .� v
Preface . �� x
Guided Tour . �xi
Acknowledgments �� xvii

 1 Regression .� 1

 2 Uncertainty Quantification � 55

 3 Regularization and Selection � 100

 4 Classification 151

 5 Causal Inference with Experiments � 175

 6 Causal Inference with Controls � 215

 7 Trees and Forests 259

 8 Factor Models � 282

 9 Text as Data � 316

 10 Deep Learning � 345

 Appendix: R Primer � 383

Bibliography 419
Glossary 424
Acronyms 433
Index 436

Confirming Pages

tad71671_fm_i-xxii.indd vii 01/13/22 10:24 PM

vii

CONTENTS

About the Authors .� v

Preface . �� x
What Is This Book About? x

Guided Tour . �xi
Practical Data Science for Decision Making xi
An Introductory Example xii
Machine Learning xiv
Computing with R xv

Acknowledgments �� xvii

1 Regression .1
Linear Regression 3
Residuals 15
Logistic Regression 21
Likelihood and Deviance 26
Time Series 30
Spatial Data 46

2 Uncertainty Quantification � 55
Frequentist Uncertainty 56
False Discovery Rate Control 67
The Bootstrap 72
More on Bootstrap Sampling 86
Bayesian Inference 91

3 Regularization and Selection � 100
Out-of-Sample Performance 101
Building Candidate Models 108
Model Selection 130
Uncertainty Quantification for the Lasso 144

4 Classification 151
Nearest Neighbors 152
Probability, Cost, and Classification 158
Classification via Regression 160
Multinomial Logistic Regression 163

Confirming PagesConfirming Pages

tad71671_fm_i-xxii.indd viii 01/13/22 10:24 PMtad71671_fm_i-xxii.indd viii 01/13/22 10:24 PM

viii Contents

5 Causal Inference with Experiments � 175
Notation for Causal Inference 177
Randomized Controlled Trials 179
Regression Adjustment 184
Regression Discontinuity Designs 192
Instrumental Variables 199
Design of Experiments 208

6 Causal Inference with Controls � 215
Conditional Ignorability 216
Double Machine Learning 224
Heterogeneous Treatment Effects 231
Using Time Series as Controls 241

7 Trees and Forests 259
Decision Trees 261
Random Forests 268
Causal Inference with Random Forests 275
Distributed Computing for Random Forests 277

8 Factor Models � 282
Clustering 283
Factor Models and PCA 290
Factor Regression 302
Partial Least Squares 308

9 Text as Data � 316
Tokenization 317
Text Regression 325
Topic Models 329
Word Embedding 338

10 Deep Learning � 345
The Ingredients of Deep Learning 346
Working with Deep Learning Frameworks 352
Stochastic Gradient Descent 367
The State of the Art 374
Intelligent Automation 380

Confirming PagesConfirming Pages

Contents ix

tad71671_fm_i-xxii.indd ix 01/13/22 10:24 PMtad71671_fm_i-xxii.indd ix 01/13/22 10:24 PM

 Appendix: R Primer � 383
Getting Started with R 384
Working with Data 396
Advanced Topics for Functions 408
Organizing Code, Saving Work, and Creating Reports 414

Bibliography 419
Glossary 424
Acronyms 433
Index 436

Confirming Pages

tad71671_fm_i-xxii.indd x 01/13/22 10:24 PM

x

PREFACE

What Is This Book About?
The practice of data analytics is changing and modernizing. Innovations in computation and
machine learning are creating new opportunities for the data analyst: exposing previously
unexplored data to scientific analysis, scaling tasks through automation, and allowing deeper
and more accurate modeling. Spreadsheet models and pivot tables are being replaced by code
scripts in languages like R and Python. There has been massive growth in digitized information,
accompanied by development of systems for storage and analysis of this data. There has also
been an intellectual convergence across fields—machine learning and computer science, sta-
tistics, and social sciences and economics—that has raised the breadth and quality of applied
analysis everywhere. This is the data science approach to analytics, and it allows leaders to go
deeper than ever to understand their operations, products, and customers.

This book is a primer for those who want to gain the skills to use data science to help make
decisions in business and beyond. The modern business analyst uses tools from machine learn-
ing, economics, and statistics to not only track what has happened but predict the future for
their businesses. Analysts may need to identify the variables important for business policy, run
an experiment to measure these variables, and mine social media for information about public
response to policy changes. A company might seek to connect small changes in a recommen-
dation system to changes in customer experience and use this information to estimate a demand
curve. And any analysis will need to scale to companywide data, be repeatable in the future,
and quantify uncertainty about the model estimates and conclusions.

This book focuses on business and economic applications, and we expect that our core
audience will be looking to apply these tools as data scientists and analysts inside companies.
But we also cover examples from health care and other domains, and the practical material that
you learn in this book applies far beyond any narrow set of business problems.

This is not a book about one of machine learning, economics, or statistics. Rather, this
book pulls from all of these fields to build a toolset for modern business analytics. The material
in this book is designed to be useful for decision making. Detecting patterns in past data can
be useful—we will cover a number of pattern recognition topics—but the necessary analysis
for deeper business problems is about why things happen rather than what has happened. For
this reason, this book will spend the time to move beyond correlation to causal analysis. This
material is closer to economics than to the mainstream of data science, which should help you
have a bigger practical impact through your work.

We can’t cover everything here. This is not an encyclopedia of data analysis. Indeed, for
continuing study, there are a number of excellent books covering different areas of contempo-
rary machine learning and data science. For example, Hastie et al. (2009) is a comprehensive
modern statistics reference and James et al. (2021) is a less advanced text from a similar view-
point. You can view this current text as a stepping stone to a career of continued exploration
and learning in statistics and machine learning. We want you to leave with a set of best prac-
tices that make you confident in what to trust, how to use it, and how to learn more.

Confirming Pages

tad71671_fm_i-xxii.indd xi 01/13/22 10:24 PM

xi

GUIDED TOUR

This book is based on the Business Data Science text by Taddy (2019), which was itself developed
as part of the MBA data science curriculum at the University of Chicago Booth School of Business.
This new adaptation creates a more accessible and course-ready textbook, and includes a major
expansion of the examples and content (plus an appendix tutorial on computing with R). Visit Con-
nect for digital assignments, code, datasets, and additional resources.

Practical Data Science for Decision Making
Our target readership is anyone who wants to get the skills to use modern large-scale data to
make decisions, whether they are working in business, government, science, or anywhere else.

In the past 10 years, we’ve observed the growth of a class of generalists who can understand busi-
ness problems and also dive into the (big) data and run their own analyses. There is a massive demand
for people with these capabilities, and this book is our attempt to help grow more of these sorts of
people. You may be reading this book from a quantitative undergraduate course, as part of your MBA
degree at a business school, or in a data science or other graduate program. Or, you may just be reading
the book on your own accord. As data analysis has become more crucial and exciting, we are seeing
a boom in people switching into data analysis careers from a wide variety of backgrounds. Those
self-learners and career-switchers are as much our audience here as students in a classroom.

All of this said, this is not an easy book. We have tried to avoid explanations that require
calculus or advanced linear algebra, but you will find the book a tough slog if you do not have a
solid foundation in first-year mathematics and probability. Since the book includes a breadth of
material that spans a range of complexity, we begin each chapter with a summary that outlines
each section and indicates their difficulty according to a ski-hill scale:

The easiest material, requiring familiarity with some transformations like logarithms
and exponents, and an understanding of the basics of probability.

Moderately difficult material, involving more advanced ideas from probability and
statistics or ideas that are going to be difficult to intuit without some linear algebra.

The really tough stuff, involving more complex modeling ideas (and notation) and
tools from linear algebra and optimization.

The black diamond material is not necessary for understanding future green or blue sections,
and so instructors may wish to set their courses to cover the easy and moderately difficult sec-
tions while selecting topics from the hardest sections.

The book is designed to be self-contained, such that you can start with little prerequisite
background in data science and learn as you go. However, the pace of content on introductory
probability and statistics and regression is such that you may struggle if this is your first-ever
course on these ideas. If you find this to be the case, we recommend spending some time work-
ing through a dedicated introductory statistics book to build some of this understanding before
diving into the more advanced data science material.

Confirming PagesConfirming Pages

tad71671_fm_i-xxii.indd xii 01/13/22 10:24 PMtad71671_fm_i-xxii.indd xii 01/13/22 10:24 PM

xii Guided Tour

It is also important to recognize that data science can be learned only by doing. This means
writing the code to run analysis routines on really messy data. We will use the R scripting lan-
guage for all of our examples. All example code and data is available online, and one of the
most important skills you will get out of this book will be an advanced education in this pow-
erful and widely used statistical software. For those who are completely new to R, we have also
included an extensive R primer. The skills you learn here will also prepare you well for learning
how to program in other languages, such as Python, which you will likely encounter in your
business analysis career.

This is a book about how to do modern business analytics. We will lay out a set of core
principles and best practices that come from statistics, machine learning, and economics. You
will be working through many real data analysis examples as you learn by doing. It is a book
designed to prepare scientists, engineers, and business professionals to use data science to
improve their decisions.

An Introductory Example
Before diving into the core material, we will work through a simple finance example to illus-
trate the difference between data processing or description and a deeper business analysis.
Consider the graph in Figure 0.1. This shows seven years of monthly returns for stocks in the
S&P 500 index (a return is the difference between the current and previous price divided by
the prior value). Each line ranging from bright yellow to dark red denotes an individual stock’s
return series. Their weighted average—the value of the S&P 500—is marked with a bold line.
Returns on three-month U.S. treasury bills are in gray.

This is a fancy plot. It looks cool, with lots of different lines. It is the sort of plot that you
might see on a computer screen in a TV ad for some online brokerage platform. If only I had
that information, I’d be rich!

Re
tu

rn

2010 2011 2012 2013 2014 2015 2016 2017

–0
.5

0.
0

0.
5

S&P500

FIGURE 0.1 A fancy plot: monthly stock returns for members of the S&P 500 and their average (the bold
line). What can you learn?

Confirming PagesConfirming Pages

Guided Tour xiii

tad71671_fm_i-xxii.indd xiii 01/13/22 10:24 PMtad71671_fm_i-xxii.indd xiii 01/13/22 10:24 PM

But what can you actually learn from Figure 0.1? You can see that returns do tend to
bounce around near zero (although the long-term average is reliably much greater than zero).
You can also pick out periods of higher volatility (variance) where the S&P 500 changes more
from month to month and the individual stock returns around it are more dispersed. That’s
about it. You don’t learn why these periods are more volatile or when they will occur in the
future. More important, you can’t pull out useful information about any individual stock. There
is a ton of data on the graph but little useful information.

Instead of plotting raw data, let’s consider a simple market model that relates individual
stock returns to the market average. The capital asset pricing model (CAPM) regresses the
returns of an individual asset onto a measure of overall market returns, as shown here:

 rjt = αj + βjmt + εjt (0.1)

The output rjt is equity j return at time t. The input mt is a measure of the average return—the
“market”—at time t. We take mt as the return on the S&P 500 index that weights 500 large
companies according to their market capitalization (the total value of their stock). Finally, εjt is
an error that has mean zero and is uncorrelated with the market.

Equation (0.1) is the first regression model in this book. You’ll see many more. This is a
simple linear regression that should be familiar to most readers. The Greek letters define a line
relating each individual equity return to the market, as shown in Figure 0.2. A small βj, near zero,
indicates an asset with low market sensitivity. In the extreme, fixed-income assets like treasury
bills have βj = 0. On the other hand, a βj > 1 indicates a stock that is more volatile than the mar-
ket, typically meaning growth and higher-risk stocks. The αj is free money: assets with αj > 0 are
adding value regardless of wider market movements, and those with αj < 0 destroy value.

Figure 0.3 represents each stock “ticker” in the two-dimensional space implied by the mar-
ket model’s fit on the seven years of data in Figure 0.1. The tickers are sized proportional to
each firm’s market capitalization. The two CAPM parameters—[α, β]—tell you a huge amount
about the behavior and performance of individual assets. This picture immediately allows you
to assess market sensitivity and arbitrage opportunities. For example, the big tech stocks of
Facebook (FB), Amazon (AMZN), Apple (AAPL), Microsoft (MSFT), and Google (GOOGL)
all have market sensitivity β values close to one. However, Facebook, Amazon, and Apple
generated more money independent of the market over this time period compared to Micro-
soft and Google (which have nearly identical α values and are overlapped on the plot). Note

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃
˜̃˜̃

˜̃

˜̃˜̃ ˜̃
˜̃ ˜̃

˜̃

˜̃̃̃ ˜̃
˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃ ˜̃

˜̃˜̃ ˜̃

˜̃ ˜̃

˜̃
˜̃

˜̃

˜̃
˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃
˜̃

˜̃

˜̃
˜̃

˜̃

˜̃
˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃

˜̃˜̃ ˜̃˜̃
˜̃

˜̃

˜̃

˜̃

˜̃
˜̃

˜̃
˜̃

˜̃

˜̃

˜̃ ˜̃
˜̃

˜̃

˜̃

˜̃
˜̃

˜̃ ˜̃

˜̃

˜̃

˜̃

˜̃

˜̃
˜̃

˜̃

−0.2 −0.1 0.0 0.1 0.2

−
0.

3
−

0.
1

0.
1

0.
3

Market return

Eq
ui

ty
 re

tu
rn

FIGURE 0.2 A scatterplot of a single stock’s returns against market returns, with the fitted regression
line for the model of Equation (0.1) shown in red.

Confirming PagesConfirming Pages

tad71671_fm_i-xxii.indd xiv 01/13/22 10:24 PMtad71671_fm_i-xxii.indd xiv 01/13/22 10:24 PM

xiv Guided Tour

that Facebook’s CAPM parameters are estimated from a shorter time period, since it did not
have its IPO until May of 2012. Some of the older technology firms, such as Oracle (ORCL),
Cisco (CSCO), and IBM, appear to have destroyed value over this period (negative alpha).
Such information can be used to build portfolios that maximize mean returns and minimize
variance in the face of uncertain future market conditions. It can also be used in strategies
like pairs-trading where you find two stocks with similar betas and buy the higher alpha while
“shorting” the other.

CAPM is an old tool in financial analysis, but it serves as a great illustration of what to strive
toward in practical data science. An interpretable model translates raw data into information that
is directly relevant to decision making. The challenge in data science is that the data you’ll be
working with will be larger and less structured (e.g., it will include text and image data). Moreover,
CAPM is derived from assumptions of efficient market theory, and in many applications you won’t
have such a convenient simplifying framework on hand. But the basic principles remain the same:
you want to turn raw data into useful information that has direct relevance to business policy.

Machine Learning
Machine learning (ML) is the field of using algorithms to automatically detect and predict pat-
terns in complex data. The rise of machine learning is a major driver behind data science and a
big part of what differentiates today’s analyses from those of the past. ML is closely related to
modern statistics, and indeed many of the best ideas in ML have come from statisticians. But
whereas statisticians have often focused on model inference—on understanding the parameters
of their models (e.g., testing on individual coefficients in a regression)—the ML community
has historically been more focused on the single goal of maximizing predictive performance
(i.e., predicting future values of some response of interest, like sales or prices).

˜.° ˜.˛ ˜.˝ ˙.˜ ˙.ˆ ˙.° ˙.˛

˜.˜
˜˜

˜.˜
˜ˇ

˜.˜
˙˜

˜.˜
˙ˇ

Beta

Al
ph

a

AAPL

GOOGMSFT

FB

AMZN

JNJ

XOM

JPMWMT
WFC

V

BAC

PG

T

GE

ORCL

CVX

DIS
BA

AMGN

CSCO

IBM

PFE

KO

PEP

FIGURE 0.3 Stocks positioned according to their fitted market model, where α is money you make
regardless of what the market does and β summarizes sensitivity to market movements. The tickers are sized
proportional to market capitalization. Production change alpha to α and beta to β in the plot axis labels.

Confirming PagesConfirming Pages

Guided Tour xv

tad71671_fm_i-xxii.indd xv 01/13/22 10:24 PMtad71671_fm_i-xxii.indd xv 01/13/22 10:24 PM

A focus on prediction tasks has allowed ML to quickly push forward and work with larger
and more complex data. If all you care about is predictive performance, then you don’t need
to worry about whether your model is “true” but rather just test how well it performs when
predicting future values. This single-minded focus allows rapid experimentation on alternative
models and estimation algorithms. The result is that ML has seen massive success, to the point
that you can now expect to have available for almost any type of data an algorithm that will
work out of the box to recognize patterns and give high-quality predictions.

However, this focus on prediction means that ML on its own is less useful for many decision-
making tasks. ML algorithms learn to predict a future that is mostly like the past. Suppose that
you build an ML algorithm that looks at how customer web browser history predicts how much
they spend in your e-commerce store. A purely prediction-focused algorithm will discern what
web traffic tends to spend more or less money. It will not tell you what will happen to the
spending if you change a group of those websites (or your prices) or perhaps make it easier for
people to browse the Web (e.g., by subsidizing broadband). That is where this book comes in:
we will use tools from economics and statistics in combination with ML techniques to create a
platform for using data to make decisions.

Some of the material in this book will be focused on pure ML tasks like prediction and
pattern recognition. This is especially true in the earlier chapters on regression, classification,
and regularization. However, in later chapters you will use these prediction tools as parts of
more structured analyses, such as understanding subject-specific treatment effects, fitting
consumer demand functions, or as part of an artificial intelligence system. This typically
involves a mix of domain knowledge and analysis tools, which is what makes the data scientist
such a powerful figure. The ML tools are useless for policy making without an understanding
of the business problems, but a policy maker who can deploy ML as part of their analysis
toolkit will be able to make better decisions faster.

Computing with R
You don’t need to be a software engineer to work as a data scientist, but you need to be able
to write and understand computer code. To learn from this book, you will need to be able to
read and write in a high-level scripting language, in other words, flexible code that can be used
to describe recipes for data analysis. In particular, you will need to have a familiarity with R
(r-project.org).

The ability to interact with computers in this way—by typing commands rather than click-
ing buttons or choosing from a menu—is a basic data analysis skill. Having a script of com-
mands allows you to rerun your analyses for new data without any additional work. It also
allows you to make small changes to existing scripts to adapt them for new scenarios. Indeed,
making small changes is how we recommend you work with the material in this book. The
code for every in-text example is available on-line, and you can alter and extend these scripts
to suit your data analysis needs. In the examples for this book, all of the analysis will be con-
ducted in R. This is an open-source high-level language for data analysis. R is used widely
throughout industry, government, and academia. Companies like RStudio sell enterprise prod-
ucts built around R. This is not a toy language used simply for teaching purposes—R is the real
industrial-strength deal.

For the fundamentals of statistical analysis, R is tough to beat: all of the tools you need for
linear modeling and uncertainty quantification are mainstays. R is also relatively forgiving for

Confirming PagesConfirming Pages

tad71671_fm_i-xxii.indd xvi 01/13/22 10:24 PMtad71671_fm_i-xxii.indd xvi 01/13/22 10:24 PM

xvi Guided Tour

the novice programmer. A major strength of R is its ecosystem of contributed packages. These
are add-ons that increase the capability of core R. For example, almost all of the ML tools that
you will use in this book are available via packages. The quality of the packages is more varied
than it is for R’s core functionality, but if a package has high usage you should be confident that
it works as intended.

The Appendix of this book contains a tutorial that is dedicated to getting you started in R.
It focuses on the topics and algorithms that are used in the examples in this book. You don’t
need to be an expert in R to learn from this book; you just need to be able to understand the
fundamentals and be willing to mess around with the coded examples. If you have no formal
background in coding, worry not: many in the field started out in this position. The learning
curve can be steep initially, but once you get the hang of it, the rest will come fast. The tutorial
in the Appendix should help you get started. We also provide extensive examples throughout
the book, and all code, data, and homework assignments are available through Connect. Every
chapter ends with a Quick Reference section containing the basic R recipes from that chapter.
When you are ready to learn more, there are many great places where you can supplement your
understanding of the basics of R. If you simply search for R or R statistics books on-line, you
will find a huge variety of learning resources.

Confirming Pages

tad71671_fm_i-xxii.indd xvii 01/13/22 10:24 PM

xvii

We are grateful for the reviewers who provided feedback on this first edition:

ACKNOWLEDGMENTS

Sue Abdinnour, Wichita State University
Anil Aggarwal, University of Baltimore
Goutam Chakraborty, Oklahoma State

University
Rick Cleary, Babson College
John Daniels, Central Michigan University
John Draper, Ohio State University
Janet Frasier, West Virginia University
Phillip C. Fry, Boise State University
Marina Girju, California Baptist University
Richard Hauser, East Carolina University
Kuo-Ting “Ken” Hung, Suffolk University
Aimee Jacobs, California State University,

Fresno
Jaehwan Jeong, Radford University
Patrick Johanns, Univeristy of Iowa
Barry King, Butler University
Lauren Kleitz, Xavier University
Su “Sue” Kong, Kutztown University
Min Li, California State University,

Sacramento
Jiajuan Liang, University of New Haven
Vic Matta, Ohio University
Ebrahim Mortaz, Pace University
Bob Myers, Georgia Tech University
Robert Nauss, University of

Missouri-St. Louis

Arash Negahban, California State
University, Chico

Yasin Ozcelik, Fairfield University
Brad Price, West Virginia University
Xingye Qiao, Binghamton University
Roman Rabinovich, Boston University
Bharatendra Rai, UMass–Dartmouth
Balaraman Rajan, California State

University, East Bay
Rouzbeh Razavi, Kent State University
John Repede, Queens University of Charlotte
Thomas R. Robbins, East Carolina

University
Wendy Swenson Roth, Georgia State

University
Seokwoo Song, Weber State University
John R. Stevens, Utah State University
Jie Tao, Fairfield University
Vicar S. Valencia, Indiana University South

Bend
Nikhil Varaiya, San Diego State University
Gang Wang, UMass - Dartmouth
K. Matthew Wong, St. John’s University
Chase Wu, New Jersey Institute of

Technology
Yajiong “Lucky” Xue, East Carolina

University

Confirming PagesConfirming Pages

tad71671_fm_i-xxii.indd xviii 01/13/22 10:24 PMtad71671_fm_i-xxii.indd xviii 01/13/22 10:24 PM

xviii Preface

Affordable solutions,
added value

Make technology work for you with
LMS integration for single sign-on access,
mobile access to the digital textbook,
and reports to quickly show you how
each of your students is doing. And with
our Inclusive Access program you can
provide all these tools at a discount to
your students. Ask your McGraw Hill
representative for more information.

65%
Less Time
Grading

Laptop: McGraw Hill; Woman/dog: George Doyle/Getty Images

Checkmark: Jobalou/Getty ImagesPadlock: Jobalou/Getty Images

Instructors: Student Success Starts with You

Tools to enhance your unique voice
Want to build your own course? No problem. Prefer to use an
OLC-aligned, prebuilt course? Easy. Want to make changes throughout
the semester? Sure. And you’ll save time with Connect’s auto-grading too.

Solutions for
your challenges

A product isn’t a solution. Real
solutions are affordable, reliable,
and come with training and
ongoing support when you need
it and how you want it. Visit www.
supportateverystep.com for videos
and resources both you and your
students can use throughout the
semester.

Study made personal
Incorporate adaptive study resources like
SmartBook® 2.0 into your course and help your
students be better prepared in less time. Learn
more about the powerful personalized learning
experience available in SmartBook 2.0 at
www.mheducation.com/highered/connect/smartbook

Confirming PagesConfirming Pages

Preface xix

tad71671_fm_i-xxii.indd xix 01/13/22 10:24 PMtad71671_fm_i-xxii.indd xix 01/13/22 10:24 PM

Effective tools for efficient studying
Connect is designed to help you be more productive with simple, flexible, intuitive tools that maximize
your study time and meet your individual learning needs. Get learning that works for you with Connect.

Everything you need in one place
Your Connect course has everything you need—whether reading on
your digital eBook or completing assignments for class, Connect makes
it easy to get your work done.

“I really liked this
app—it made it easy
to study when you
don't have your text-
book in front of you.”

- Jordan Cunningham,
 Eastern Washington University

Study anytime, anywhere
Download the free ReadAnywhere app and access
your online eBook, SmartBook 2.0, or Adaptive
Learning Assignments when it’s convenient, even
if you’re offline. And since the app automatically
syncs with your Connect account, all of your work is
available every time you open it. Find out more at
www.mheducation.com/readanywhere

Top: Jenner Images/Getty Images, Left: Hero Images/Getty Images, Right: Hero Images/Getty Images

Calendar: owattaphotos/Getty Images

Students: Get Learning that Fits You

Learning for everyone
McGraw Hill works directly with Accessibility Services
Departments and faculty to meet the learning needs
of all students. Please contact your Accessibility
Services Office and ask them to email
accessibility@mheducation.com, or visit
www.mheducation.com/about/accessibility
for more information.

Confirming Pages

tad71671_fm_i-xxii.indd xx 01/13/22 10:24 PM

xx

Proctorio
Remote Proctoring & Browser-Locking
Capabilities

Remote proctoring and browser-locking capabilities, hosted by
Proctorio within Connect, provide control of the assessment

environment by enabling security options and verifying the identity of the student.
Seamlessly integrated within Connect, these services allow instructors to control students’

assessment experience by restricting browser activity, recording students’ activity, and verify-
ing students are doing their own work.

Instant and detailed reporting gives instructors an at-a-glance view of potential academic
integrity concerns, thereby avoiding personal bias and supporting evidence-based claims.

 ReadAnywhere
Read or study when it’s convenient for you with McGraw Hill’s free ReadAnywhere app. Avail-
able for iOS or Android smartphones or tablets, ReadAnywhere gives users access to McGraw
Hill tools including the eBook and SmartBook 2.0 or Adaptive Learning Assignments in Con-
nect. Take notes, highlight, and complete assignments offline – all of your work will sync when
you open the app with WiFi access. Log in with your McGraw Hill Connect username and
password to start learning – anytime, anywhere!

OLC-Aligned Courses
Implementing High-Quality Online Instruction and Assessment through Preconfigured
Courseware

In consultation with the Online Learning Consortium (OLC) and our certified Faculty
Consultants, McGraw Hill has created pre-configured courseware using OLC’s quality score-
card to align with best practices in online course delivery. This turnkey courseware contains
a combination of formative assessments, summative assessments, homework, and application
activities, and can easily be customized to meet an individual’s needs and course outcomes. For
more information, visit https://www.mheducation.com/highered/olc.

Tegrity: Lectures 24/7
Tegrity in Connect is a tool that makes class time available 24/7 by automatically capturing
every lecture. With a simple one-click start-and-stop process, you capture all computer screens
and corresponding audio in a format that is easy to search, frame by frame. Students can replay
any part of any class with easy-to-use, browser-based viewing on a PC, Mac, iPod, or other
mobile device.

Educators know that the more students can see, hear, and experience class resources,
the better they learn. In fact, studies prove it. Tegrity’s unique search feature helps students

Confirming Pages

tad71671_fm_i-xxii.indd xxi 01/13/22 10:24 PM

xxi

efficiently find what they need, when they need it, across an entire semester of class record-
ings. Help turn your students’ study time into learning moments immediately supported by
your lecture. With Tegrity, you also increase intent listening and class participation by easing
students’ concerns about note-taking. Using Tegrity in Connect will make it more likely you
will see students’ faces, not the tops of their heads.

Test Builder in Connect
Available within Connect, Test Builder is a cloud-based tool that enables instructors to format
tests that can be printed, administered within a Learning Management System, or exported as
a Word document of the test bank. Test Builder offers a modern, streamlined interface for easy
content configuration that matches course needs, without requiring a download.

Test Builder allows you to:

· access all test bank content from a particular title.
· easily pinpoint the most relevant content through robust filtering options.
· manipulate the order of questions or scramble questions and/or answers.
· pin questions to a specific location within a test.
· determine your preferred treatment of algorithmic questions.
· choose the layout and spacing.
· add instructions and configure default settings.

Test Builder provides a secure interface for better protection of content and allows for just-
in-time updates to flow directly into assessments.

Writing Assignment
Available within Connect and Connect Master, the Writing Assignment tool delivers a learning
experience to help students improve their written communication skills and conceptual under-
standing. As an instructor you can assign, monitor, grade, and provide feedback on writing
more efficiently and effectively.

Application-Based Activities in Connect
Application-Based Activities in Connect are highly interactive, assignable exercises that provide
students a safe space to apply the concepts they have learned to real-world, course-specific prob-
lems. Each Application-Based Activity involves the application of multiple concepts, allowing
students to synthesize information and use critical thinking skills to solve realistic scenarios.

 Your Book, Your Way
McGraw Hill’s Content Collections Powered by Create® is a self-service website that
enables instructors to create custom course materials—print and eBooks—by drawing upon

Confirming Pages

tad71671_fm_i-xxii.indd xxii 01/13/22 10:24 PM

xxii

McGraw Hill’s comprehensive, cross-disciplinary content. Choose what you want from our
high-quality textbooks, articles, and cases. Combine it with your own content quickly and eas-
ily, and tap into other rights-secured, third-party content such as readings, cases, and articles.
Content can be arranged in a way that makes the most sense for your course and you can
include the course name and information as well. Choose the best format for your course: color
print, black-and-white print, or eBook. The eBook can be included in your Connect course and
is available on the free ReadAnywhere app for smartphone or tablet access as well. When you
are finished customizing, you will receive a free digital copy to review in just minutes! Visit
McGraw Hill Create®— www.mcgrawhillcreate.com — today and begin building!

Confirming Pages

tad71671_ch01_001-054.indd 1 01/13/22 07:44 PM

1

This chapter develops the framework and language of regression: building models
that predict response outputs from feature inputs.

Section 1.1 Linear R egression: Specify, estimate, and predict from a linear
regression model for a quantitative response y as a function of inputs x. Use
log transforms to model multiplicative relationships and elasticities, and use
 interactions to allow the effect of inputs to depend on each other.

Section 1.2 R esiduals: Calculate the residual errors for your regression fit, and
understand the key fit statistics deviance, R2, and degrees of freedom.

Section 1.3 L ogistic Regression: Build logistic regression models for a binary
response variable, and understand how logistic regression is related to linear
regression as a generalized linear model. Translate the concepts of deviance,
likelihood, and R2 to logistic regression, and be able to interpret logistic
 regression coefficients as effects on the log odds that y = 1.

Section 1.4 Lik elihood and Deviance: Relate likelihood maximization and
deviance minimization, use the generalized linear models to determine residual
deviance, and use the predict function to integrate new data with the same
 variable names as the data used to fit your regression.

Section 1.5 Time Series: Adapt your regression models to allow for
 dependencies in data that has been observed over time, and understand time
series concepts including seasonal trends, autoregression, and panel data.

Section 1.6 Spatial Data: Add spatial fixed effects to your regression mod-
els and use Gaussian process models to estimate spatial dependence in your
observations.

1

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 2 01/13/22 07:44 PM

2 Chapter 1 Regression

The vast majority of problems in applied data science require regression modeling. You
have a response variable (y) that you want to model or predict as a function of a vector
of input features, or covariates (x). This chapter introduces the basic framework and lan-

guage of regression. We will build on this material throughout the rest of the book.
Regression is all about understanding the conditional probability distribution for “y given

x,” which we write as p(y|x). Figure 1.1 illustrates the conditional distribution in contrast to a
marginal distribution, which is so named because it corresponds to the unconditional distribu-
tion for a single margin (i.e., column) of a data matrix.

A variable that has a probability distribution (e.g., number of bathrooms in Figure 1.1) is
called a random variable. The mean for a random variable is the average of random draws from
its probability distribution. While the marginal mean is a simple number, the conditional mean
is a function. For example, from Figure 1.1b, you can see that the average home selling price
takes different values indexed by the number of bathrooms. The data is distributed randomly
around these means, and the way that you model these distributions drives your estimation and
prediction strategies.

Conditional Expectation
A basic but powerful regression strategy is to build models in terms of averages and lines. That
is, we will model the conditional mean for our output variable as a linear function of inputs.
Other regression strategies can sometimes be useful, such as quantile regression that models
percentiles of the conditional distribution. However for the bulk of applications you will find
that mean regression is a good approach.

There is some important notation that you need to familiarize yourself with for the rest of
the book. We model the conditional mean for y given x as

 𝔼[y | x] = f (x′β) (1.1)

where

 • 𝔼[⋅] denotes the taking of the expectation or average of whatever random variable is inside
the brackets. It is an extremely important operation, and we will use this notation to define
many of our statistical models.

FIGURE 1.1 Illustration of marginal versus conditional distributions for home prices. On the left, we have
the marginal distribution for all of the home prices. On the right, home price distributions are conditional on
the number of bathrooms.

(a) Marginal Distribution
Home value

H
om

e
va

lu
e

10
00

00
0

0

0 1 2 3
Number of bathrooms

4 5 6 70

0
40

00

Fr
eq

ue
nc

y
80

00

500000 1500000

(b) Conditional Distribution

Confirming PagesConfirming Pages

Chapter 1 Regression 3

tad71671_ch01_001-054.indd 3 01/13/22 07:44 PM

 • The vertical bar | means “given” or “conditional upon,” so that 𝔼[y|x] is read as “the
 average for y given inputs x.”

 • f (·) is a “link” function that transforms from the linear model to your response.
 • x = [1, x1, x2, . . . xp] is the vector of covariates and β = [β0, β1, β2, . . . βp] are the

 corresponding coefficients.

The vector notation, x′β, is shorthand for the sum of elementwise products:

 x′β = [1 x 1 x 2 ⋯ x p]

⎡

 ⎢

⎣

 β 0

 β 1

 β 2
⋮

 β p

⎤

 ⎥

⎦

 = β 0 + x 1 β 1 + x 2 β 2 + … + x p β p (1.2)

This shorthand notation will be used throughout the book. Here we have used the convention
that x0 = 1, such that β0 is the intercept.

The link function, f(·), defines the relationship between your linear function x′β and the
response. The link function gives you a huge amount of modeling flexibility. This is why mod-
els of the kind written in Equation (1.1) are called generalized linear models (GLMs). They
allow you to make use of linear modeling strategies after some simple transformations of your
output variable of interest. In this chapter we will outline the two most common GLMs: linear
regression and logistic regression. These two models will serve you well for the large majority
of analysis problems, and through them you will become familiar with the general principles
of GLM analysis.

1.1 Linear Regression
Linear regression is the workhorse of analytics. It is fast to fit (in terms of both analyst and com-
putational time), it gives reasonable answers in a variety of settings (so long as you know how
to ask the right questions), and it is easy to interpret and understand. The model is as follows:

 𝔼[y|x] = β 0 + x 1 β 1 + x 2 β 2 + … + x p β p (1.3)

This corresponds to using the link function f(z) = z in Equation (1.1).
With just one input x, you can write the model as 𝔼 [y | x] = β 0 + x β 1 and plot it as in

 Figure 1.2. β0 is the intercept. This is where the line crosses the y axis when x is 0. β1 is the

FIGURE 1.2 Simple linear regression with a positive slope β1. The plotted line corresponds to 𝔼 [y | x] .

x

1

y

β0

β1

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 4 01/13/22 07:44 PM

4 Chapter 1 Regression

slope and describes how 𝔼[y|x] changes as x changes. If x increases by 1 unit, 𝔼 [y|x] changes by
β1. For a two predictor model, we are fitting a plane. Higher dimensions are more difficult to
imagine, but the basic intuition is the same.

When fitting a regression model—i.e., when estimating the β coefficients—you make
some assumptions about the conditional distribution beyond its mean at 𝔼 [y|x] . Linear regres-
sion is commonly fit for Gaussian (normal) conditional distributions. We write this conditional
distribution as
 y | x ~ N (x′β, σ 2) (1.4)

This says that the distribution for y as a function of x is normally distributed around
 𝔼[y|x] = x′β with variance σ2. The same model is often written with an additive error term:

 y = x′β + ε, ε ~ N(0, σ 2) (1.5)

where ε are the “independent” or “idiosyncratic” errors. These errors contain the variations in
y that are not correlated with x. Equations (1.4) and (1.5) describe the same model. Figure 1.3
illustrates this model for single-input simple linear regression. The line is the average 𝔼[y|x]
and vertical variation around the line is what is assumed to have a normal distribution.

You will often need to transform your data to make the linear model of Equation (1.5)
realistic. One common transform is that you need to take a logarithm of the response, say, “r,”
such that your model becomes

 log (r) = x′β + ε, ε ~ N(0, σ 2) (1.6)

Of course this is the same as the model in Equation (1.5), but we have just made the replace-
ment y = log(r). You will likely also consider transformations for the input variables, such that
elements of x include logarithmic and other functional transformations. This is often referred
to as feature engineering.

Example 1.1 Orange Juice Sales: Exploring Variables and the Need for a Log-Log Model As
a concrete example, consider sales data for orange juice (OJ) from Dominick’s grocery
stores. Dominick’s was a Chicago-area chain. This data was collected in the 1990s and
is publicly available from the Kilts Center at the University of Chicago’s Booth School of
Business. The data includes weekly prices and unit sales (number of cartons sold) for three OJ

FIGURE 1.3 Using simple linear regression to picture the Gaussian conditional distribution for y|x.
Here 𝔼[y|x] are the values on the line and the variation parallel to the y axis (i.e., within each narrow vertical
strip) is assumed to be described by a Gaussian distribution.

Gaussian
distribution

y

x

E[Y∣X]

Confirming PagesConfirming Pages

Chapter 1 Regression 5

tad71671_ch01_001-054.indd 5 01/13/22 07:44 PM

brands—Tropicana, Minute Maid, Dominick’s—at 83 stores in the Chicago area, as well as an
indicator, ad, showing whether each brand was advertised (in store or flyer) that week.

> oj <– read.csv(“oj.csv”,strings=T)

> head(oj)

 sales price brand ad

1 8256 3.87 tropicana 0

2 6144 3.87 tropicana 0

3 3840 3.87 tropicana 0

4 8000 3.87 tropicana 0

5 8896 3.87 tropicana 0

6 7168 3.87 tropicana 0

> levels(oj$brand)

[1] “dominicks” “minute.maid” “tropicana”

Notice the argument strings=T in read.csv as shorthand for “stringsAsFactors = TRUE.”
This converts our brand column into a factor variable. This was the default behavior of read.
csv prior to version 4.0.0 of R, but you now need to specify it explicitly. Otherwise you will get
an error when you try to make the plots or fit the regression models below.

The code-printout above is our first example showing R code and output. We will include
a ton of code and output snippets like this throughout the book: they are an integral part of the
material. If this output looks unfamiliar to you, you should break here and take the time to work
through the R-primer in the appendix.

Figure 1.4 shows the prices and sales broken out by brand. You can see in Figure 1.4a that
each brand occupies a different price range: Dominick’s is the budget option, Tropicana is the
luxury option, and Minute Maid lives between. In Figure 1.4c, sales are clearly decreasing with

FIGURE 1.4 Dominick’s OJ prices by brand and monthly sales, both raw and after a log transformation.

log(price)
–0.5 0.0 0.5 1.0

lo
g(

sa
le

s)

12
10

8
6

4

(c) log Sales vs. Log Price

Price
0.5 1.5 2.5 3.5

Sa
le

s
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5

(b) Sales vs. Price(a) Price by Brand

Price
1 2 3 4

do
m

in
ic

ks
m

in
ut

e.
m

ai
d

Br
an

d
tro

pi
ca

na

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 6 01/13/22 07:44 PM

6 Chapter 1 Regression

price. This makes sense: demand is downward sloping, and if you charge more, you sell less.
More specifically, it appears that log sales has a roughly linear relationship with log price. This
is an important point. Whenever you are working with linear (i.e., additive) models, it is crucial
that you try to work in the space where you expect to find linearity. For variables that change
multiplicatively with other factors, this is usually the log scale (see the nearby box for a quick
review on logarithms). For comparison, the raw (without log) values in Figure 1.4b show a
nonlinear relationship between prices and sales.

Log-Log Models and Elasticities
Another common scenario models against each other two variables that both move multipli-
catively. For example, Figure 1.5 shows the national gross domestic product (GDP) versus
imports for several countries. Fitting a line to the left panel would be silly; its slope will be
entirely determined by small changes in the U.S. values. In contrast, the right panel shows that
GDP and imports follow a neat linear relationship in log space.

Returning to our OJ example, Figure 1.4c indicates that this log-log model might be appro-
priate for the orange juice sales versus price analysis. One possible regression model is

 log (𝚜𝚊𝚕𝚎𝚜) = β 0 + β 1 log (𝚙𝚛𝚒𝚌𝚎) + ε (1.7)

Here, log(sales) increase by β1 for every unit increase in log(price). Conveniently, log-log
models have a much more intuitive interpretation: sales increase by β1% for every 1% increase
in price. To see this, you need a bit of calculus. Write y = exp[β0 + β1 log(x) + ε] and differen-
tiate with respect to x:

 dy ___
dx

 = β 1 __ x e β 0 + β 1 log (x) +ε = β 1 __ x y ⇒ β 1 = dy / y ____
dx / x (1.8)

This shows that β1 is the proportional change in y over the proportional change in x. In econom-
ics there is a special name for such an expression: elasticity. The concept of elasticity will play
an important role in many of our analyses.

FIGURE 1.5 National GDP against imports, in original and log scale.

0 200 400 600 800 1000 1200

0
20

00
40

00
60

00
80

00
10

00
0

Imports

G
D

P

Brazil
Canada

erlpt

ted KinFrance

India

Japan

NigeriaIsraelGreeceFinlandArgentinaDenmark
AustraliaMalaysiaNethEgy ands

United States

Uni gdom

HaitiCubaBoliviaLiberiaSamoaJamaicaPanamaMauritius

0–2 2 4 6 8

0
2

4
6

8

log(Imports)

lo
g(

G
D

P)

ArgentinaAu

Bolivia

Br
Canada

Cuba

ptG ecenmarkMalaysiaEgyre
eriaDeIsraelFinland

India

a

Japan

HaitiMaJ

Liberia

straliaNetherlands

Nig

nama

Samoa

uritiusamaic
Pa

United States

azil FranceUnited Kingdom

Confirming PagesConfirming Pages

Chapter 1 Regression 7

tad71671_ch01_001-054.indd 7 01/13/22 07:44 PM

Example 1.2 Orange Juice Sales: Linear Regression Now that we have established what a
log-log model will do for us, let’s add a bit of complexity to the model from (1.7) to make it
more realistic. If you take a look at Figure 1.4c, it appears that the three brands have log-log
sales-price relationships that are concentrated around three separate lines. If you suspect that
each brand has the same β1 elasticity but a different intercept (i.e., if all brands have sales that
move with price the same way but at the same price some brands will sell more than others),
then you would use a slightly more complex model that incorporates both brand and price:

 log (𝚜𝚊𝚕𝚎𝚜) = α 𝚋𝚛𝚊𝚗𝚍 + β log (𝚙𝚛𝚒𝚌𝚎) + ε (1.13)

Here, αbrand is shorthand for a separate intercept for each OJ brand, which we could write out
more fully as

 α 𝚋𝚛𝚊𝚗𝚍 = α 0 1 [𝚍𝚘𝚖𝚒𝚗𝚒𝚌𝚔𝚜] + α 1 1 [𝚖𝚒𝚗𝚞𝚝𝚎.𝚖𝚊𝚒𝚍] + α 2 1 [𝚝𝚛𝚘𝚙𝚒𝚌𝚊𝚗𝚊] . (1.14)

The indicator functions, 1 [v] , are one if v is the true factor level and zero otherwise. Hence,
Equation (1.13) says that, even though their sales all have the same elasticity to price, the
brands can have different sales at the same price due to brand-specific intercepts.

Fitting Regressions with glm
To fit this regression in R you will use the glm function, which is used to estimate the class of
generalized linear models that we introduced in Equation (1.1). There is also a lm function that

Recall the logarithm definition:

 log (a) = b ⇔ a = e b (1.9)

Here, e ≈ 2.72 is “Euler’s number” and we refer to eb as “e to the power of b” or, simply,
‘b exponentiated.’ We will sometimes write exp[b] instead of eb; they mean the same
thing. There are other types of logarithms (sometimes base 10 is used in introductory
classes), but we will always use the natural log defined in Equation (1.9). The base e
plays a central role in science and modeling of systems because ex is its own derivative:
dex/dx = ex for those readers who know their calculus.

In a simple linear regression for log(y) on x, β1 is added to the expected value for
log(y) for each unit increase in x:

 log (y) = β 0 + β 1 x + ϵ. (1.10)

The fact that we are taking the log of y makes this model multiplicative. Recall some
basic facts about logs and exponents: log(ab) = log(a) +log(b), log(ab) = b log(a), and
ea+b = eaeb. Thus, exponentiating both sides of Equation (1.10) yields

 y = e β 0 + β 1 x+ϵ = e β 0 e β 1 x e ϵ (1.11)

Considering x* = x + 1, you get that

 y* = e β 0 +ϵ e β 1 x* = e β 0 +ϵ e β 1 (x+1) = e β 0 + β 1 x+ϵ e β 1 = ye β 1 (1.12)

Therefore, each unit increase in x leads 𝔼 [y|x] to be multiplied by the factor e β 1 .

Logarithms and Exponents

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 8 01/13/22 07:44 PM

8 Chapter 1 Regression

The fitted object fit is a list of useful things (type names(fit) to see them), and there are
functions to access the results. For example,

 • summary(fit) prints the model, information about residual errors, the estimated coeffi-
cients and uncertainty about these estimates (we will cover the uncertainty in detail in the
next chapter), and statistics related to model fit.

 • coef(fit) supplies just the coefficient estimates.
 • predict(fit, newdata=mynewdata) predicts y where mynewdata is a data frame

with the same variables as mydata.

The formula syntax in the glm call is important. The ~ symbol is read as “regressed onto” or “as
a function of.” The variable you want to predict, the y response variable, comes before the ~,
and the input features, x, come after. This model formula notation will be used throughout the
remainder of the book, and we note some common specifications in Table 1.1.

The R formula for (1.13) is log(sales) ~ brand + log(price). You can fit this with
glm using the oj data, and then use the coef function to view the fitted coefficients. (More on
this in Section 1.4.)

> fit <– glm(y ~ var1 + ... + varP, data=mydata)

fits only linear regression models, so you could use that here also (it takes the same arguments),
but we will get in the habit of using glm since it works for many different GLMs. The function
is straightforward to use: you give it a data frame with the data argument and provide a for-
mula that defines your regression.

TABLE 1.1 Some common syntax for use in formulas.

y ~ x1 model by x1

y ~ . include all other columns
y ~ .−x3 include all except x3

y ~ .−1 include all, but no intercept
y ~ 1 intercept only
y ~ x1*x2 include interaction for x1 and x2 and lower order terms
y ~ x1:x2 include interaction only
y ~ .^2 all possible 2 way interactions and lower order terms

> fit<–glm(log(sales) ~ brand + log(price), data=oj)

> coef(fit) # fitted coefficients

 (Intercept) brandminute.maid brandtropicana log(price)

 10.8288216 0.8701747 1.5299428 –3.1386914

There are a few things to notice here. First, you can see that β ̂ = − 3.1 for the estimated coef-
ficient on log price. Throughout this book we use the convention that θ ̂ denotes the estimated
value for some parameter θ. So β ̂ is the estimated “sales-price elasticity,” and it says that
expected sales drop by about 3% for every 1% price increase. Second, notice that there are
distinct model coefficients for Minute Maid and Tropicana but not for Dominick’s. This is due

Confirming PagesConfirming Pages

Chapter 1 Regression 9

tad71671_ch01_001-054.indd 9 01/13/22 07:44 PM

to the way that R creates a numeric representation of the factor variables. It treats one of the
factor levels as a ‘reference level’ that is subsumed into the intercept. For details, see the box on
model matrices (i.e. design matrices).

The fitted values from the regression in Equation (1.13) are shown in Figure 1.6 alongside
the original data. You see three lines shifted according to brand identity. At the same price,
Tropicana sells more than Minute Maid, which in turn sells more than Dominick’s. This makes
sense: Tropicana is a luxury product that is preferable at the same price.

FIGURE 1.6 OJ data and the fitted regression lines (i.e., conditional expectations) for our model from
(1.13) that regresses log(sales) on log(price) and brand.

–0.5

4
6

8
10

12

0.0

dominicks
minute.maid
tropicana

0.5
log(price)

lo
g(

sa
le

s)

1.0

When you regress onto a factor variable, glm converts the factor levels into a specific
numeric representation. Take a look at rows 100, 200, and 300 from the oj data and notice
that the brand column contains brand names, not numbers.

Model (Design) Matrices in R

> oj[c(100,200,300),]

 sales price brand ad

100 4416 3.19 tropicana 0

200 5440 2.79 minute.maid 0

300 51264 1.39 dominicks 1

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 10 01/13/22 07:44 PM

10 Chapter 1 Regression

1.1.1 Interactions
All of the lines in Figure 1.6 have the same slope. In economic terms, the model assumes that
consumers of the three brands have the same price sensitivity. This seems unrealistic: money
is probably less of an issue for Tropicana customers than it is for the average Dominick’s
consumer. You can build this information into your regression by having log price interact
with brand.

An interaction term is the product of two inputs. Including an interaction between, say,
xj and xk inputs, implies that your linear regression equation includes the product xjxk as
an input.

 𝔼[y|x] = β 0 + … + β k x k + β j x j + x j x k β jk (1.15)

Here, “. . .” just denotes whatever else is in your multiple linear regression model. Equation (1.15)
says that the effect on the expected value for y due to a unit increase in xj is βj + xkβjk, such that
it depends upon xk.

Interactions are central to scientific and business questions. For example,

 • How does drug effectiveness change with patient age?
 • Does gender change the effect of education on wages?
 • How does consumer price sensitivity change across brands?

The first step of glm is to create a model matrix (also called a design matrix) that defines
the numeric inputs x. It does this with a call to the model.matrix function, and you can
pull that step out to see what happens.

The model.matrix function has expanded these brand factor levels into a couple
of binary, or “dummy,” variables that are one when the observation is from that brand
and zero otherwise. For example, brandtropicana is 1 for the Tropicana observation in
row 100 and zero otherwise. There is no branddominicks indicator because you need
only two variables to represent three categories: when both brandminute.maid and
brandtropicana are zero, the intercept gives the value for Dominick’s expected log sales
at a log price of zero. Each factor’s reference level is absorbed by the intercept and the
other coefficients represent “change relative to reference” (here, Dominick’s). To check
the reference level of your factors, type levels(myfactor). The first level is the refer-
ence and by default this will be the first in the alphabetized list of levels. To change this,
you can do myfactor = relevel(myfactor, “myref”).

> x <– model.matrix(~ log(price) + brand, data=oj)

> x[c(100,200,300),]

 (Intercept) log(price) brandminute.maid brandtropicana

100 1 1.1600209 0 1

200 1 1.0260416 1 0

300 1 0.3293037 0 0

Confirming PagesConfirming Pages

Chapter 1 Regression 11

tad71671_ch01_001-054.indd 11 01/13/22 07:44 PM

In each case here, you want to know whether one variable changes the effect of another. You
don’t want to know the average price sensitivity of customers; you want to know whether they
are more price sensitive for one product versus another.

Example 1.3 OJ Sales: Interaction In the OJ sales regression, to get brand-specific price
elasticity terms you need to include an interaction between each of the brand indicator terms
and the log price. We can write this as a model with a separate intercept and slope for each
brand:

 log (𝚜𝚊𝚕𝚎𝚜) = α 𝚋𝚛𝚊𝚗𝚍 + β 𝚋𝚛𝚊𝚗𝚍 log (𝚙𝚛𝚒𝚌𝚎) + ε (1.16)

We can also expand this notation out to write the exact model that glm will be estimating:

 log (𝚜𝚊𝚕𝚎𝚜) =

 α 0 + α 1 𝟙 [𝚖𝚒𝚗𝚞𝚝𝚎.𝚖𝚊𝚒𝚍] + α 2 𝟙 [𝚝𝚛𝚘𝚙𝚒𝚌𝚊𝚗𝚊] +

 (β 0 + β 1 𝟙 [𝚖𝚒𝚗𝚞𝚝𝚎.𝚖𝚊𝚒𝚍] + β 2 𝟙 [𝚝𝚛𝚘𝚙𝚒𝚌𝚊𝚗𝚊]) log (𝚙𝚛𝚒𝚌𝚎) + ε
 (1.17)

As before, dominicks is the reference level for brand and so it is absorbed into both the
intercept and baseline slope on log price. For an observation from Dominick’s, the indicator
functions are all zero so that 𝔼 [log (𝚜𝚊𝚕𝚎𝚜)] = α 0 + β 0 log (𝚙𝚛𝚒𝚌𝚎) .

You can fit this model in glm with the * symbol, which is syntax for “interacted with.” Note
that * also adds the main effects—all of the terms from our earlier model in Equation (1.13).

> fit2way <– glm(log(sales) ~ log(price)*brand, data=oj)

> coef(fit2way)

 (Intercept) log(price)

 10.95468173 –3.37752963

 brandminute.maid brandtropicana

 0.88825363 0.96238960

log(price):brandminute.maid log(price):brandtropicana

 0.05679476 0.66576088

The fitted regression is pictured in Figure 1.7.
In the glm output, the log(price):brand coefficients are the interaction terms. Plug-

ging in 0 for both Tropicana and Minute Maid indicators yields the equation of the line for
Dominick’s:

 𝔼 [log (𝚜𝚊𝚕𝚎𝚜)] = 10.95 − 3.38 log (𝚙𝚛𝚒𝚌𝚎)

Plugging in one for Minute Maid terms and zero for Tropicana terms yields the equation for
Minute Maid:

 𝔼 [log (𝚜𝚊𝚕𝚎𝚜)]

 = 10.95 − 3.38 log (𝚙𝚛𝚒𝚌𝚎) + 0.89 + 0.06 log (𝚙𝚛𝚒𝚌𝚎)

 = 11.84 − 3.32 log (𝚙𝚛𝚒𝚌𝚎)

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 12 01/13/22 07:44 PM

12 Chapter 1 Regression

And plugging in one for Tropicana and zero for Minute Maid yields the regression line for
Tropicana:

𝔼 [log (𝚜𝚊𝚕𝚎𝚜)]

=

10.95 − 3.38 log (𝚙𝚛𝚒𝚌𝚎) + 0.96 + 0.67 log (𝚙𝚛𝚒𝚌𝚎)

=

11.91 − 2.71 log (𝚙𝚛𝚒𝚌𝚎)

We see that Tropicana customers are indeed less sensitive than the others: they have a sales-
price elasticity of −2.7 versus around −3.3 for both Dominick’s and Minute Maid. This means,
for example, that the store should expect a smaller sales increase for price cuts or coupons on
Tropicana relative to use of the same promotion on the other brands. The price sensitivity that
we estimated for model Equation (1.13), −3.1, was the result of averaging across the three dis-
tinct brand elasticities.

Advertising and Price Elasticity
We conclude this introduction to linear regression—and the study of orange juice—with a
look at the role of advertising in the relationship between sales and prices. Recall that the OJ
data includes an ad dummy variable, indicating that a given brand was promoted with either
an in-store display or a flier ad during the week that sales and prices were recorded. The ads
can increase sales at all prices, they can change price sensitivity, and they can do both of these
things in a brand-specific manner. To model this, we specify a three-way interaction between
price, brand, and ad:

 log (𝚜𝚊𝚕𝚎𝚜) = α 𝚋𝚛𝚊𝚗𝚍,  𝚊𝚍 + β 𝚋𝚛𝚊𝚗𝚍,  𝚊𝚍 log (𝚙𝚛𝚒𝚌𝚎) + ε (1.18)

By subsetting on brand, ad we are indicating that there are different intercepts and slopes for
each combination of the two factors. To fit this model with glm, you interact brand, ad, and
log(price) with each other in the formula. Again, glm automatically includes the lower-level

FIGURE 1.7 Fit for the model where we allow interaction between price and brand. Note that if you
extrapolate too far, the linearity assumption implies Tropicana selling less than Minute Maid at the same
price. This is a reminder that linear models are approximations and should be used with care away from the
center of the observed data.

–0.5

4
6

8
10

12

0.0

dominicks
minute.maid
tropicana

0.5
log(price)

lo
g(

sa
le

s)

1.0

Confirming PagesConfirming Pages

Chapter 1 Regression 13

tad71671_ch01_001-054.indd 13 01/13/22 07:44 PM

The brand and ad specific elasticities are compiled in Table 1.2. We see that being featured
always leads to more price sensitivity. Minute Maid and Tropicana elasticities drop from −2
to below −3.5 with ads, while Dominick’s drops from −2.8 to −3.2. Why does this happen?
One possible explanation is that advertisement increases the population of consumers who are
considering your brand. In particular, it can increase your market beyond brand loyalists, to
people who will be more price sensitive than those who reflexively buy your orange juice every
week. Indeed, if you observe increased price sensitivity, it can be an indicator that your mar-
keting efforts are expanding your consumer base. This is why Marketing 101 dictates that ad
campaigns should usually be accompanied by price cuts. There is also an alternative explana-
tion. Since the featured products are often also discounted, it could be that at lower price points
the average consumer is more price sensitive (i.e., that the price elasticity is also a function of
price). The truth is probably a combination of these effects.

Finally, notice that in our two-way interaction model (without including ad) Minute
Maid’s elasticity of −3.3 was roughly the same as Dominick’s—it behaved like a budget prod-
uct where its consumers are focused on value. However, in Table 1.2, you can see that Minute
Maid and Tropicana have nearly identical elasticities and that both are different from Dom-
inick’s. Minute Maid is looking more similar now to the other national brand product. What
happened?

interactions and main effects—all of the terms from our model in (1.18)—in addition to the
new three-way interactions.

> fit3way <– glm(log(sales) ~ log(price)*brand*ad, data=oj)

> coef(fit3way)

 (Intercept) log(price)

 10.40657579 –2.77415436

 brandminute.maid brandtropicana

 0.04720317 0.70794089

 ad log(price):brandminute.maid

 1.09440665 0.78293210

 log(price):brandtropicana log(price):ad

 0.73579299 –0.47055331

 brandminute.maid:ad brandtropicana:ad

 1.17294361 0.78525237

 log(price):brandminute.maid:ad log(price):brandtropicana:ad

 –1.10922376 –0.98614093

TABLE 1.2 Brand and ad dependent elasticities. Test that you can recover these numbers from the R
output.

Dominick’s Minute Maid Tropicana
Not featured −2.8 −2.0 −2.0
Featured −3.2 −3.6 −3.5

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 14 01/13/22 07:44 PM

14 Chapter 1 Regression

The answer is that the simpler model in Equation (1.16) led to a confounding between
advertisement and brand effects. Figure 1.8 shows that Minute Maid was featured more often
than Tropicana. Since being featured leads to more price sensitivity, this made Minute Maid
artificially appear more price sensitive when you don’t account for the ad’s effect. The model
in Equation (1.18) corrects this by including ad in the regression. This phenomenon, where
variable effects can get confounded if you don’t control for them correctly (i.e., include those
effects in your regression model), will play an important role in our later discussions of
causal inference.

1.1.2 Prediction with glm
Once you have decided on a fitted model, using it for prediction is easy in R. The predict
function takes the model you want to use for prediction and a data frame containing the new
data you want to predict with.

Example 1.4 Orange Juice Sales: Predicting Sales We can use our fitted model, fit3way,
to make predictions of sales of Orange Juice. Suppose you want to predict sales for all three
brands when orange juice is featured at a price of $2.00 per carton. The first step is to create
a data frame containing the observations to predict from. Be sure to specify a value for each
predictor in the model.

FIGURE 1.8 A mosaic plot of the amount of advertisement by brand. In a mosaic plot, the size of the
boxes is proportional to the amount of data contained in that category. For example, the plot indicates that
most sales are not accompanied by advertising (the featured=FALSE column is wider than for
featured=TRUE) and that Minute Maid is featured (i.e., ad=1) more often than Tropicana.

do
m

in
ic

ks
m

in
ut

e.
m

ai
d

tro
pi

ca
na

Br
an

d

FALSE TRUE 0.
0

0.
2

0.
4

0.
6

0.
8

1.0

Featured

Confirming PagesConfirming Pages

Chapter 1 Regression 15

tad71671_ch01_001-054.indd 15 01/13/22 07:44 PM

Once you have your data frame specifying values for each variable in the model, simply feed it
into the predict function and specify the model glm should use for prediction.

> newdata <– data.frame(price=rep(2,3),

+ brand=factor(c(“tropicana”,“minute.maid”,“dominicks”),

+ levels=levels(oj$brand)),

+ ad=rep(1,3))

> newdata #our data frame of 3 new observations

 price brand ad

1 2 tropicana 1

2 2 minute.maid 1

3 2 dominicks 1

> predict(fit3way, newdata=newdata)

 1 2 3

 10.571588 10.245901 9.251922

> exp(predict(fit3way, newdata=newdata))

 1 2 3

39010.56 28166.85 10424.59

Of course, there is uncertainty about these predictions (and about all of our coefficient esti-
mates above). For now we are just fitting lines, but in Chapter 2 we will detail how you go
about uncertainty quantification.

Note that you can exponentiate these values to translate from log sales to raw sales:

However, these raw sales predictions are actually biased estimates of the raw expected sales.
Due to the nonlinearity introduced through log transformation, exponentiating the expected log
sales will give you a different answer than the expected raw sales (the exponentiated expected
log sales will tend to be lower than the expected sales). We will discuss this bias further in the
next chapter and introduce a technique for bias correction.

1.2 Residuals
When we fit a linear regression model, we have estimated an expected value for each
observation in our dataset. These are often called the fitted values, and they are written as
 y ̂ i = x i ′ β ̂ using our usual convention of putting hats on estimated values. Unless you have data
with zero noise or as many input variables as observations (in either case you have no business
fitting a regression with glm), then the fitted values will not be equal to the observed values.

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 16 01/13/22 07:44 PM

16 Chapter 1 Regression

The difference between them is called the residual. We will usually denote the residual as ei,
such that

 e i = y i − y ̂ i = y i − x i ′ β ̂ (1.19)

Residuals play a central role in how linear regression works. They are our estimates of the error
terms, εi, and they represent the variability in response that is not explained by the model.

Figure 1.9a illustrates residuals for a single-input regression. Points above the
line have a positive residual and points below have a negative residual. Figure 1.9b
shows the observed versus fitted y for our OJ example. The residuals are the verti-
cal distance between each point and the fitted line. For observed y that are higher than the
predicted response, y ˆ , the residual is positive and for observed y that are lower, the residual is
negative, that is, observed y that are higher than the predicted response y ˆ .

The residuals tell you about your fit of the linear regression model. Recall our full model
is log (𝚜𝚊𝚕𝚎𝚜 i) = x i ′ β + ε i where εi ~ N(0, σ2). The residuals are your estimates for the errors
εi, and you can use them to evaluate the model εi ~ N(0, σ2). For example, one important
consideration is whether we are correct to assume a constant error variance: the fact that σ2
is the same for every εi. If you look at Figure 1.9b, you can see that this is probably not true.
On the bottom side of the plot, there is a collection of large negative residuals for Dominick’s.
The model appears to have a floor on expected log sales. If you look at the results, the maximum
price ever charged for Dominick’s is $2.69 and this leads to a floor on expected log sales of
ŷ = 7.66 (when ad = 0). However, our residuals show that sometimes Dominick’s sells far less
than this floor. This is possibly driven by stock-outs, where the supply of Dominick’s orange
juice can’t keep up with demand. Although the problem here appears isolated to a small num-
ber of observations, we could likely improve our model for the Dominick’s OJ sales-price
elasticity if we were able to remove observations where the store ran out of OJ. In Chapter 2 we
will discuss strategies for dealing with this type of nonconstant error variance.

FIGURE 1.9 Panel (a) shows residuals in a simple linear regression, and panel (b) shows the fitted
response ŷ vs. observed response y for the Dominick’s OJ example along with a line along ŷ = y. In both
plots, the residuals are the vertical distance between each point and the fitted line.

(a) (b)
Fitted log(sales)

4
6

8

O
bs

er
ve

d
lo

g(
sa

le
s) 10

12

dominicks
minute.maid
tropicana

4 6

Positive
residual

y

x

Y

<

Negative
residual

8 10 12

Confirming PagesConfirming Pages

Chapter 1 Regression 17

tad71671_ch01_001-054.indd 17 01/13/22 07:44 PM

In the case of our three-way interaction model for OJ log sales, the estimated error variance is
 σ ̂ 2 = 0.4829706. To understand how glm came up with this estimate, we need to dive deeper
into the concepts in the bottom two lines shown here: deviance and degrees of freedom.

1.2.1 Deviance and Least Squares Regression
Deviance is the distance between your fitted model and the data. We will look at the specifics
of deviance later, in the context of both linear and logistic regression. But for now you just need
to know that deviance for linear regression is the sum of squared errors. The null deviance is
calculated for the “null model,” i.e. a model where none of the regression inputs have an impact
on y. This is just the model yi ~ N(μ, σ2). Estimating μ with the sample mean response, y ¯ , we
can calculate this null deviance as Σi(yi – y ¯)2. For our OJ regression, this produces the 30079
value from the summary output.

> summary(fit3way)

...

(Dispersion parameter for gaussian family taken to be 0.4829706)

 Null deviance: 30079 on 28946 degrees of freedom

Residual deviance: 13975 on 28935 degrees of freedom

...

Error Variance
Another important use of the residuals is to estimate the error variance, σ2. Notwithstanding
the minor issue of the handful of large Dominick’s errors just described, we can do this by
looking at the variability of the residuals. When you call summary on the fitted glm object, R
calls the summary.glm function that prints a bunch of information about the model estimates.
Don’t worry about all of this information; we will work through most of it in the coming two
chapters. But near the bottom it prints out an estimate for the “dispersion parameter for
gaussian family.” This is what glm calls its estimate for the error variance, σ ̂ 2.

> (SST <– sum((log(oj$sales) – mean(log(oj$sales)))^2))

[1] 30078.71

The null deviance for linear regression is known as the sum squared total error, or SST. It mea-
sures how much variation you have in your response before fitting the regression.

The residual deviance, or more commonly fitted deviance or simply deviance, is calculated
for your fitted regression model. It measures the amount of variation you have after fitting the
regression. Given residuals ei = yi – ŷi, the residual deviance is just the sum of squared residuals
Σ i e i 2 . For our OJ regression, this gives us a residual deviance of 13975.

> (SSE <– sum((log(oj$sales) – fit3way$fitted)^2))

[1] 13974.76

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 18 01/13/22 07:44 PM

18 Chapter 1 Regression

This residual deviance for linear regression is known as the sum squared residual error, or
SSE. It measures the tightness of your model fit. For example, a common metric for model
fit takes the SSE and scales it by the number of observations to get mean squared error:
MSE = SSE/n, where n is the sample size.

Proportion of Deviance Explained
The calculations behind SSE and SST are illustrated for simple linear regression in Figure 1.10.
Comparison between these two deviances tells you how the variability has been reduced due to
the information in your regression inputs. A common and useful statistic, one that we will use
throughout the book, is the R2 equal to one minus the residual deviance over the null deviance.
In linear regression this is

 R 2 = 1 − SSE ____
SST

 (1.20)

The R2 is the proportion of variability explained by the regression. It is the proportional reduc-
tion in squared errors due to your regression inputs. The name R2 is derived from the fact that,
for linear regression only, it is equal to the square of the correlation (usually denoted r) between
fitted ŷi and observed values yi.

Example 1.5 Orange Juice Sales: R2 We can calculate the R2 a couple of different ways for
our three-way interaction OJ regression.

FIGURE 1.10 Figure 1.10a shows the squared residual errors. These are the components of the SSE, the
quantity that linear regression minimizes and is output in glm as Residual deviance. Figure 1.10b
shows the squared vertical distance for each observation to the overall mean, y ¯ . The sum of these squared
areas is the sum square total (SST) and is output as Null deviance.

(a) SSE (b) SST

Y = b0 + b1X

Y
–

<

using the glm object attributes

> 1–fit3way$deviance/fit3way$null.deviance

Confirming PagesConfirming Pages

Chapter 1 Regression 19

tad71671_ch01_001-054.indd 19 01/13/22 07:44 PM

However you calculate it, the regression model explains around 54% of the variability in log
orange juice sales. The interpretation of R2 as squared correlation can help you get a sense of
what this means: if R2 = 1, a plot of fitted vs. observed values should lie along the perfectly
straight line ŷ = y. As R2 decreases the scatter around this line increases.

The residual, or “fitted,” deviance plays a crucial role in how models are fit. The con-
cept of deviance minimization is crucial to all model estimation and machine learning. In
the case of linear regression, you are minimizing the sum of squared residual errors. This
gives linear regression its common name: Ordinary Least Squares, or OLS (the “ordinary”
is in contrast to “weighted least squares” in which some observations are given more weight
than others). Our readers coming from an economics or social sciences background might
be more familiar with this terminology. We will use the terms OLS and linear regression
interchangeably.

1.2.2 Degrees of Freedom
Reprinting the relevant summary output, we have one final concept to decipher.

[1] 0.5353939

using the SSE and SST calculated above

> 1 – SSE/SST

[1] 0.5353939

correlation squared

> cor(fit3way$fitted,log(oj$sales))^2

[1] 0.5353939

> summary(fit3way)

...

(Dispersion parameter for gaussian family taken to be 0.4829706)

 Null deviance: 30079 on 28946 degrees of freedom

Residual deviance: 13975 on 28935 degrees of freedom

...

The degrees of freedom are crucial for mapping from your deviance to the estimated dispersion
parameter, σ ̂ 2 . Unfortunately, the way that summary.glm uses this term is confusing because
it doesn’t differentiate between two different types of degrees of freedom: those used in the
model fit, and those left for calculating the error variance. These concepts are important in
statistics and machine learning, so we’ll take the time to pull them apart.

To understand degrees of freedom, take a step back from regression and consider one of
the most basic estimation problems in statistics: estimating the variance of a random variable.

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 20 01/13/22 07:44 PM

20 Chapter 1 Regression

Say you have a sample {z1 . . . zn } drawn independently from the probability distribution p(z).
Recall your usual formula for estimating the variance of this distribution:

 var(z) ≈ ∑
i=1

n
 (z i − z ¯) 2 _

n − 1 (1.21)

where z ¯ = (1 / n) ∑ i=1 n z i is the sample mean. Why are we dividing by (n – 1) instead of n? If
we divide by n our estimate of the variance will be biased low—it will tend to underestimate
var(z). To get the intuition behind this, consider an n =1 sample that consists of a single draw:
z ¯ = z 1 , and thus z 1 − z ¯ = 0 by construction. Since you are estimating the mean from your sam-
ple, you have the flexibility to fit perfectly a single observation. In other words, when n =1 you
have zero opportunities to view any actual variation around the mean. Extending to a larger
sample of size n, you have only n – 1 opportunities to observe variation around z ¯ .

To use the language of statistics, “opportunities to observe variation” are called degrees
of freedom. In our simple variance example, we used one model degree of freedom to estimate
 𝔼 [z] , and that leaves us with n – 1 residual degrees of freedom to observe error variance. More
generally:

 • The model degrees of freedom are the number of random observations your model could
fit perfectly. In regression models, this is the number of coefficients. For example, given a
model with two coefficients (an intercept and slope) you can fit a line directly through two
points.

 • The residual degrees of freedom are equal to the number of opportunities that you have
to observe variation around the fitted model mean. This is the sample size, n, minus the
model degrees of freedom.

The model degrees of freedom are used for fitting the model and the residual degrees of free-
dom are what is left over for calculating variability after fitting the model. Throughout the rest
of the book, we will follow the convention of using degrees of freedom (or df) to refer to the
model degrees of freedom unless stated otherwise. Somewhat confusingly, the summary.glm
output uses degrees of freedom to refer to the residual degrees of freedom, or n – df in our
notation.

Once we have the terminology straight, we can now complete our original mission to under-
stand how glm has calculated σ ̂ 2 . In fitting the linear regression, the number of model degrees
of freedom used is equal to the number of parameters in the regression line. For our model in
fit3way, there are a total of 12 parameters in the model (use length(coef(fit3way)) to
verify). So we would say df = 12 for this model. And since there are 28,947 observations in the
OJ dataset, the residual degrees of freedom for this model are 28,947 − 12 = 28,935. This is the
number that glm outputs next to the residual deviance. It is the number of opportunities that we
have to view variation around the regression line. So, to estimate the residual variance, we take
the sum of the squared residuals (the SSE) and divide by 28,935.

> SSE/fit3way$df.residual

[1] 0.4829706

This gives you σ ̂ 2 , or what summary.glm calls the “dispersion.” The summary output also
provides a degrees of freedom for the null deviance. Since the null model fits only a
single mean value, 𝔼 [y] = y ¯ , this is equal to n – 1, the denominator in our simple variance
equation (1.21). For the OJ example this is 28,946.

Confirming PagesConfirming Pages

Chapter 1 Regression 21

tad71671_ch01_001-054.indd 21 01/13/22 07:44 PM

1.3 Logistic Regression
Linear regression is just one instance of the general linear modeling framework. Another
extremely useful GLM is logistic regression. This is the GLM that you will want to use for
modeling a binary response: a y that is either 1 or 0 (e.g., true or false). While linear regression
is probably the most commonly used technique in business analytics, logistic regression would
come a close second in popularity. In machine learning, logistic regression and extensions of
the framework are the dominant tools for prediction and classification.

Binary responses arise from a number of prediction targets:

 • Will this person pay their bills or default?
 • Is this a thumbs-up or thumbs-down review?
 • Will the customer take advantage of the offer?
 • Is the writer a Republican or Democrat?

Even when the response of interest is not binary (e.g., revenue), it may be that your
 decision-relevant information is binary (e.g., profit versus loss) and it is simplest to think
in these terms. Logistic regression is also the stepping stone to more complex classification
 methodologies, which we will dive into in Chapter 4.

As you read through this section, it is important to keep in mind that logistic regression
works very similarly to linear regression. It is easy to get wrapped up in the differences
between logistic and linear regression, but the basics are exactly the same. In each case you
are fitting a linear function of the input features and you are estimating the model by mini-
mizing the deviance. The only difference is the choice of link function in your generalized
linear model.

1.3.1 Logit Link Function
Recall our basic GLM specification of Equation (1.1) for expressing the expected value of
response y given inputs x: 𝔼[y|x] = f (x′β) . The link function, f, is used to map from a linear
function to a response that takes a few specific values. When the response y is 0 or 1, the con-
ditional mean becomes

 𝔼[y|x] = p (y = 1|x) × 1 + p (y = 0|x) × 0 = p (y = 1|x)
Therefore, the expectation you’re modeling is a probability. This implies that you need to
choose the link function f (·) to give values between zero and one.

Using the shorthand of p = p(y = 1|x), you need to choose a link function such that it
makes sense to write

 p = p (y = 1|x) = f (β 0 + β 1 x 1 … + β k x k)

Logistic regression addresses this by using a logit link function, f (z) = ez /(1 + ez). This func-
tion, which is also often called the “sigmoidal function,” is plotted in Figure 1.11. Notice that
the function asymptotes (approaches but does not cross) zero at large negative z values, and one
at large positive z values.

To see how this link works, consider extreme values for z. At large negative values, say as
z → –∞, then f(z) → 0/(1 + 0) = 0 and the event y = 1 approaches zero probability. At large
positive values, say as z → ∞, then f (z) → ∞/(∞ + 1) = 1 and y = 1 becomes guaranteed. Thus,
the logit link maps from the “real line” of numbers to the [0,1] space of probabilities.

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 22 01/13/22 07:44 PM

22 Chapter 1 Regression

Using a logit link, the GLM equation for 𝔼 [y | x] is defined as

 𝔼[y|x] = p(y = 1|x) = e x′β ________
1 + e x′β

 = e β 0 + β 1 x 1 ⋯+ β k x k ____________
1 + e β 0 + β 1 x 1 ⋯+ β k x k

 (1.22)

A common alternate way to write (1.22) results from dividing the numerator and denominator
by e x′β :

 𝔼[y|x] = e x′β ________
1 + e x′β

 =
 e x′β ____
 e x′β

 1 ____
 e x′β

 + e x′β ____
 e x′β

 = 1 _________

 e −x′β + 1
 (1.23)

How do we interpret the β coefficients in this model? We need to start with the relationship
between probability and odds. The odds of an event are defined as the probability that it hap-
pens over the probability that it doesn’t.

 odds = p ___ 1 − p (1.24)

For example, if an event has a 0.25 probability of happening, then its odds are 0.25/0.75, or 1/3.
If an event has a probability of 0.9 of happening, the odds of its happening are 0.9/0.1 = 9.
Odds transform from probabilities, which take values between zero and one, to the space of all
positive values from zero to infinity.

Looking at (1.22), we can do some algebra and then take the log to derive an interpretation
for the βj coefficients. Using the shorthand p = p(y = 1|x), we have

p = e x′β ________
1 + e x′β

 ⇒ p + pe x′β = e x′β

 ⇒ p ___ 1 − p = e x′β

 ⇒ log (p
 _ 1 − p) = β 0 + β 1 x 1 ⋯ + β k x k

Thus, logistic regression is a linear model for log odds. Using what we know about logs and
exponentiation, you can interpret e β j as the multiplicative effect for a unit increase in xj on the

FIGURE 1.11 The logit link function, f(z) = ez/(1 + ez).

–6

0.0

Z

Ex
p(

z)
/(1

 +
 e

xp
(z

))

0.5

1.0

–4 –2 0 2 4 6

Confirming PagesConfirming Pages

Chapter 1 Regression 23

tad71671_ch01_001-054.indd 23 01/13/22 07:44 PM

odds for the event y =1. For example, consider a logistic regression model with a single predic-
tor x, such that odds(x) = exp[β0 + β1x].

1.3.2 Fitting logistic regression in R
You can use glm to fit logistic regressions in R. The syntax is exactly the same as for linear
regression, you just add the argument family=“binomial”. Recall that the binomial distri-
bution is the distribution for random trials with a binary outcome. The classic binomial dis-
tribution is a coin toss. Telling glm that you are working with a binomial distribution implies
that you will be working with a binary response and want to estimate probabilities. The logit
link is how glm fits probabilities. The response variable can take a number of forms including
numeric 0 or 1, logical TRUE or FALSE, or a two level factor such as win vs. lose.

Example 1.6 Logistic Regression: Detecting Spam For our first logistic regression example,
we’ll build a filter for email spam—junk mail that can be ignored. Every time an email arrives,
your email client performs a binary classification: is this spam or not spam? The email that is
classified as spam gets automatically moved to a spam folder (like that in Figure 1.12), keeping
your inbox free for important messages. We’ll train our own spam filter by fitting logistic
regression to previous emails.

Our training data spam.csv has 4601 emails, 1813 of which are spam. It contains 57
email features including indicators for the presence of 54 keywords or characters (e.g., free
or !), counts for capitalized letters (total number and longest continuous block length), and
a numeric spam variable for whether each email has been tagged as spam by a human reader
(spam is one for true spam, zero for important emails). We read this data into R as a data frame
named spammy.

FIGURE 1.12 An email folder filled with spam.

> spammy<– read.csv(“spam.csv”)

> spammy[c(1,4000), c(16,56,58)]

 word_free capital_run_length_longest spam

1 1 61 1

4000 0 26 0

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 24 01/13/22 07:44 PM

24 Chapter 1 Regression

Notice that the first email, which contained the word free and had a block of 61 capitalized
letters, was tagged as spam. Email 4000, with its more modest sequence of 26 capital letters,
is not spam.

Our logistic regression will use all of the features in spammy as inputs. The R formula “y ~ .”
tells glm to regress onto all variables in the data frame except for the response.

> spamFit <– glm(spam ~ ., data=spammy, family='binomial')

Warning message:

glm.fit: fitted probabilities numerically 0 or 1 occurred

The warning message you get when you run this regression, fitted probabilities numer-
ically 0 or 1 occurred, means the regression is able to fit some data points exactly. For
example, a spam email is modeled as having a 100% probability of being spam. This situation
is called perfect separation; it can lead to strange estimates for some coefficients and their
standard errors. It is a symptom of overfit, and in Chapter 3 we show how to avoid it via regu-
larization techniques.

The fitted object, spamFit, is a glm object that contains all the same attributes that we
were able to access when doing linear regression. For example, you can use the summary func-
tion to get statistics about your coefficients and model fit.

> summary(spamFit)

...

 Coefficients:

 Estimate Std. Error z value Pr(>|z|)

(Intercept) –1.9682470 0.1465703 –13.429 < 2e–16 ***

word_make –0.5529572 0.2356753 –2.346 0.018963 *

word_address –0.1338696 0.2217334 –0.604 0.546016

word_all –0.4946420 0.1775333 –2.786 0.005333 **

word_3d 0.8301668 0.8244961 1.007 0.313994

...

(Dispersion parameter for binomial family taken to be 1)

 Null deviance: 6170.2 on 4600 degrees of freedom

Residual deviance: 1548.7 on 4543 degrees of freedom

...

The output looks basically the same as what you get for a linear regression. Note that in logistic
regression there is no σ2 to estimate as the “dispersion parameter” because there is no error
term like the ε of linear regression. Instead, glm outputs Dispersion parameter for bino-
mial family taken to be 1. If you don’t see this, then you might have forgotten to put
“type=binomial”.

Interpreting Coefficients
Take a look at one of the large positive coefficients in your fit:

Confirming PagesConfirming Pages

Chapter 1 Regression 25

tad71671_ch01_001-054.indd 25 01/13/22 07:44 PM

The word_free variable is either one if the email contains the word free, and zero if it
doesn’t. Thus, the odds that an email is spam are about five times higher for emails that contain
the word free than for those that do not. On the other hand, you can see next that if the email
contains the word george, the odds of its being spam decrease.

> coef(spamFit)[“word_free”]

word_free

 1.542706

> exp(1.542706)

[1] 4.67723

> coef(spamFit)[“word_george”]

word_george

 –5.779841

> exp(–5.779841)

[1] 0.003089207

> 1/exp(–5.779841)

[1] 323.7077

The odds of the email being spam when the word george is present are 0.003 of the odds
of its being spam if it does not contain the word george. Or, taking the reciprocal, the odds
of its being spam when the word george is absent are about 324 times higher than if the word
george is present. This is an old dataset collected from the inbox of a guy named George.
Spammers were not very sophisticated in the 1990s, so emails containing your name were
most likely not spam.

Predicting Spam Probabilities
As with linear regression, prediction for logistic regression is easy after you’ve fit the model
with glm. You call predict on your fitted glm object and provide some newdata, with the
same variable names as the training data, at the locations where you’d like to predict. The
 output will be x′ β ̂ for each x row of mynewdata.

> predict(spamFit, newdata=spammy[c(1,4000),])

 1 4000

2.029963 –1.726788

Of course, these are not probabilities. To get those, you need to transform to f (x′ β ̂) through
the logit link as e x′ β ̂ /(1 + e x′ β ̂) , as in Eqn 1.22. The predict() function lets you add the
type=“response” argument to make this transformation and get predictions on the scale of
the response (i.e., in [0,1] probability space).

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 26 01/13/22 07:44 PM

26 Chapter 1 Regression

The first email (true spam) has an 88% chance of being spam, while email 4000 (not spam) has
a 15% chance of being spam—in other words, an 85% chance of being important email that
George wants to read. Figure 1.13 shows predicted probabilities of spam by actual spam status
for every email in the dataset. Note the long tails of small spam probabilities for true spam
and of large spam probabilities for truly important mail: any spam classifier that you construct
based on this model will occasionally make a mistake on how it treats the email. See Chapter 4
for material on designing and evaluating classification rules.

1.4 Likelihood and Deviance
Earlier in this chapter, you learned that deviance is the distance between the model and the
data. In the case of linear regression, the deviance is the sum of squared errors. Logistic regres-
sion also has a deviance, and this is the metric that glm minimizes to fit the model. But what
is the deviance for logistic regression? It is not a sum of squared errors. Instead, the logistic
regression deviance is derived from the assumed binomial distribution for the response.

How this works relies on two complementary concepts: the likelihood and the deviance.
These concepts are a bit abstract, but they play a key role in the statistical learning algorithms
that we will be working with throughout this book.

 • Likelihood is the probability of your data given the estimated model. When you maximize
the likelihood, you are fitting the parameters to “make the data look most likely.”

 • Deviance is a measure of the distance between the data and the estimated model. When
you minimize the deviance, you are fitting the parameters to make the model and data look
as close as possible.

FIGURE 1.13 Fit plot of ŷ versus y for the spam logistic regression. Since the true y is binary for spam,
you get a boxplot rather than a scatterplot. As a test of your intuition, imagine what a perfect fit (i.e., ŷ = y)
would look like for this regression.

True important

Fi
tte

d
pr

ob
ab

ili
ty

 o
f s

pa
m

0.
0

0.
2

0.
4

0.
6

0.
8

1.0

True spam

> predict(spamFit,newdata=spammy[c(1,4000),],type=“response”)

 1 4000

0.8839073 0.1509989

Confirming PagesConfirming Pages

Chapter 1 Regression 27

tad71671_ch01_001-054.indd 27 01/13/22 07:44 PM

Likelihood
To unravel these concepts we’ll start with the likelihood function. Consider a dataset, say Z,
with probability p(Z|Θ). This probability is a function of both the data Z and the parameters
Θ. The likelihood function takes a given dataset as fixed and represents how this probability
changes as a function of the parameters. Thus we write the likelihood as lhd(Θ; Z), or some-
times just lhd(Θ) for short, to indicate that it is a function of the parameters Θ. But there
is nothing complicated going on: the likelihood is just a probability. In particular, lhd(Θ) =
p(Z|Θ) in our imaginary setup here.

Consider a simple binomial example. You have a weighted coin with probability p of com-
ing up heads. You have flipped the coin ten times: it has come up heads eight times and tails
twice. We could write our dataset as Z = {heads = 8, tails = 2}. The probability of this dataset,
and the likelihood, is written

 p(Z|p) = (10 8) p 8 (1 − p) 2 = lhd (p) (1.25)

We can evaluate and plot this likelihood in R (see Figure 1.14a).

> p <- seq(0,1,length=100)

> plot(p, dbinom(8, size=10, prob=p), type=“l”, ylab=“Likelihood”)

Every time glm fits a model, it is choosing the parameters to maximize the likelihood.
This is a very common estimation strategy with many great properties. Although we will look
at other techniques in the next chapter, in particular adding penalties on parameter size during
estimation, everything will still be built around the foundation of likelihood maximization.
In our coin-flipping example, the maximum likelihood estimate (the MLE) is p ̂ = 0.8 . This
is marked with a vertical line in Figure 1.14a, and it corresponds to the highest point on the
likelihood curve.

FIGURE 1.14 The likelihood (a) and deviance (b) for the probability of success, p, in a binomial trial
with eight successes and two failures.

(a) (b)

0.6
p

0.8 1.00.0

0.
00

0.
10Li

ke
lih

oo
d

0.
20

0.
30

0.2 0.4 0.6
p

0.8 1.00.0

10
30

D
ev

ia
nc

e 50
70

0.2 0.4

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 28 01/13/22 07:44 PM

28 Chapter 1 Regression

Deviance
The deviance—the distance between your model and the data—is a simple transformation of
the likelihood. In particular,

 Deviance = − 2 log [Likelihood] + C (1.26)

Here, C is a constant that you can ignore. The precise definition for deviance is −2 times
the difference between log likelihoods for your fitted model and for a “fully saturated” model
where you have as many parameters as observations. The term corresponding to this fully satu-
rated model gets wrapped into the constant, C, but again you can ignore this in most situations.
In practice, we will often use the ∝, or proportional to, symbol when working with the deviance
and only keep track of the parts that change as a function of the parameters. For example, in our
coin tossing example, the deviance is

 dev(p) ∝ − 2 log (p 8 (1 − p) 2) = − 16 log (p) − 4 log (1 − p) (1.27)

This is plotted in Figure 1.14b, with the deviance minimizing solution marked at p ̂ = 0.8 . Devi-
ance minimization is the mirror image of likelihood maximization. With glm you have been
fitting models by minimizing the deviance, just the same as you have been fitting models to
maximize the likelihood.

Example 1.7 Gaussian Deviance Let’s work through an example with linear regression
and Gaussian (normal) errors. The probability model is y ~ N(x′β, σ2), where the Gaussian
probability density function is

 N(x′β, σ 2) = 1 _
 √
_

 2 𝜋𝜎 2
 exp [− (y − x′β) 2 ___________

2 σ 2
] (1.28)

Recall that independent random variables have the property that p(y1, . . . , yn) = p(y1) × p(y2) ×
. . . p(yn). Given n independent observations, the likelihood (i.e., the probability density of the
data) is

 ∏
i=1

n
 p(y i | x i) = ∏

i=1

n
 N(y i ; x i ′ β, σ 2) = (2 𝜋𝜎 2) − n _ 2 exp [− 1 _

2 σ 2
 ∑
i=1

n
 (y i − x i ′ β) 2] (1.29)

Taking a log and multiplying by −2 (and removing terms that don’t involve β), you get

 dev(β) = 1 _
 σ 2

 ∑
i=1

n
 (y i − x i ′ β) 2 + C ∝ ∑

i=1

n
 (y i − x i ′ β) 2 (1.30)

Thus, for linear regression with Gaussian errors, the deviance is proportional to the sum of
squared errors (the SSE). We stated this fact earlier in the chapter, but now you can derive it for
yourself. This is why linear regression is also “least-squares” regression: deviance minimization
is the same thing as minimizing the SSE.

Example 1.8 Logistic Deviance We can do a similar derivation for logistic regression. For
binary response with probabilities pi = p(yi = 1), the likelihood is

 ∏
i=1

n
 P(y i | x i) = ∏

i=1

n
 p i

yi
 (1 − p i) 1− y i (1.31)

Confirming PagesConfirming Pages

Chapter 1 Regression 29

tad71671_ch01_001-054.indd 29 01/13/22 07:44 PM

Using your logistic regression equation for pi, this becomes

 lhd(β) = ∏
i=1

n
 (exp (x i ′ β) _ 1 + exp (x i ′ β))

 y i
 (1 _ 1 + exp (x i ′ β))

1− y i
 (1.32)

Taking log and multiplying by -2 gives you the logistic regression deviance:

 dev(β) = − 2 ∑

i=1

n
 [y i log (p i) + (1 − y i) log (1 − p i)]

∝ ∑

i=1

n
 [log (1 + exp x i ′ β) − y i x i ′ β]

 (1.33)

This is the function that glm minimizes for logistic regression.

Deviance in summary.glm
Returning to our output from summary.glm (which is the function that is called when you apply
summary to a fitted glm object), we have deviances for each of the OJ and spam regressions.
For the three-way interaction OJ linear regression:

> summary(fit3way)

...

 Null deviance: 30079 on 28946 degrees of freedom

Residual deviance: 13975 on 28935 degrees of freedom

...

> summary(spamFit)

...

 Null deviance: 6170.2 on 4600 degrees of freedom

Residual deviance: 1548.7 on 4543 degrees of freedom

...

And for the spam filter logistic regression:

From Equations (1.30) and (1.33), we now know how to calculate these residual deviance val-
ues. The null deviances come from the same models, and so have the same functional form,
but they replace the regression fitted values for y with simple sample averages. With D0 as the
symbol for null deviance, we have

 • D0 = Σ(yi – y ¯)2 in linear regression
 • D0 = – 2Σ[yi log(y ¯) + (1 – yi) log(1 – y ¯)] in logistic regression

While some statistics texts restrict the concept of R2 to linear regression, we find it useful to
generalize it as the proportion of deviance that is reduced due to the regression model. Using
the symbol D to denote the residual deviance, our R2 formula is

 R 2 = 1 − D ___ D 0
 (1.34)

This R2 formula is often called McFadden’s Pseudo R2 when it is used outside of linear regression.

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 30 01/13/22 07:44 PM

30 Chapter 1 Regression

In the case of our OJ example, we previously calculated an R2 of 0.54. For the spam regression,
we can apply (1.34) to calculate that R2 = 1 – 1549/6170 = 0.75 such that around three-quarters
of the variability in spam occurrence is explained by our logistic regression. We introduced R2
in the context of linear regression, as a function of the SST and SSE, but expressing it in terms
of deviance means that it applies to any model that we fit.

1.5 Time Series
We close this chapter with an introduction to working with dependent data. The models we
have looked at so far all assume that you have independent observations. However, events that
occur one after the other in time, or say geographically near to each other, can be correlated.
For example, lawn furniture sales are always higher in spring and summer, the weather today
gives you information about what the weather will be tomorrow, or when a popular restaurant
has a busy night its neighboring restaurants also gain traffic from those who couldn’t get a
table. In this section we’ll figure out how to work with data that occurs in time, and in the next
section we consider data that occurs in space.

Fortunately, the main tools for dealing with dependence all fit within a standard regression
framework. For the most part, you simply include the variables that cause dependence in your
set of inputs. By engineering the right input features, you can control for underlying trends (e.g.,
monthly trends or regional effects) and for autoregression, which is the dependence between
neighboring outcomes. In this section we will focus on time series dependence. This is the sort
of dependence that you get for data that are observed over time, and it is common in business
analysis settings. The tools you learn for time series extend to other dependence settings, and
we give some pointers on this at the end of the section.

The traditional statistics approach to time series emphasizes careful testing for different
forms of time series structure. Through the regularization and machine learning material from
later chapters in this book, we can avoid a lot of this manual feature selection. Although it
won’t work for all types of time series dependence, a powerful modeling strategy is to simply
include a large set of time series features and rely on the data to tell you what works best. Thus,
this section will focus on helping you understand how to construct the features that are useful
for modeling time series data rather than on techniques for testing for time series dependence.
If you have a good intuition about the ingredients of a time series model, you will be in good
shape to use these features in your applied analysis work.

1.5.1 Regression for Time Series Data
A time series dataset contains observations of a response variable, and input features, taken
over time. Typical time intervals are daily, weekly, monthly, quarterly, or yearly. In business
settings, the response of interest is typically sales numbers, revenue, profit, active users, or
prices. The response variables are almost always correlated over time.

Example 1.9 Airline Passenger Data: Regression for Time Series As an introductory
example, consider a series of monthly total international airline passengers between the years
1949 and 1960.

Confirming PagesConfirming Pages

Chapter 1 Regression 31

tad71671_ch01_001-054.indd 31 01/13/22 07:44 PM

To work with time series data in R, your first step is to create a time variable. We can use
the as.Date function to build a Date class vector. Note that if you are working on a finer time
scale, R has the POSIXct class that can be used to represent dates and times down to fractions
of a second. To create a Date variable in our air travel example, we need to translate from the
Year and Month variables in our data frame. The first step is to paste these two variables into
a single year-month string for each observation, and we then call as.Date to tell R that this
is date information. The default format to read in dates is year-month-day, and that is what
we will use here. We set the day to the first of each month for convenience; these are monthly
counts so it doesn’t matter what day we use.

> air$date<–paste(“19”,air$Year,“–”,air$Month,“–01”, sep=“”)

> air$date[c(1,70,144)]

[1] “1949–1–01” “1954–10–01” “1960–12–01”

> air$date<–as.Date(air$date)

> air$date[c(1,70,144)]

[1] “1949–01–01” “1954–10–01” “1960–12–01”

> class(air$date)

[1] “Date”

> air<–read.csv(“airline.csv”)

> air[c(1,70,144),]

 Year Month Passengers

1 49 1 112

70 54 10 229

144 60 12 432

We now have the date variable, which R knows to treat as a calendar date. These dates are
represented internally as days relative to January 1, 1970. You can convert them to numeric to
see how R tracks the date.

> as.numeric(air$date[c(1,70,144)])

[1] –7670 –5571 –3318

> plot(Passengers ~ date, data=air, type=“l”)

> plot(log(Passengers) ~ date, data=air, type=“l”)

The two lines of code below produce plots of this data as in Figure 1.15.

> as.numeric(as.Date(“1970–01–01”))

[1] 0

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 32 01/13/22 07:44 PM

32 Chapter 1 Regression

Unlike our usual approach of plotting scatters of data points, here we have drawn a line
plot (using the type=“l” argument) to indicate dependence over time. In Figure 1.15a, you see
an overall trend of an increasing number of passengers with time. In addition to this upward
trend, you also see a repeated annual oscillation around the annual average. It is evident from
Figure 1.15a that the oscillations around this upward trend are getting larger with time. This
is a hallmark of a time series that is changing on a percentage scale with each observation.
Recalling our work with sales data earlier in this chapter, that is an indication that you will want
to be building a linear model on the log scale. Figure 1.15b shows the log monthly passenger
volume. You can see that the log transformation yields consistently sized annual oscillations
around a roughly linear-looking trend.

Linear Time Trend
We could fit a simple linear regression model to this data, say

 log (y t) = α + βt + ε t

If you use the date variable as the input to glm to fit this regression, then from our as.numeric
representations above you can see that the time trend will be counted in terms of days. This
means that the impact of β on the monthly change will be a function of the number of the days
of the month. This might be desirable in some applications, but to keep things simple here we
will instead regress onto a simple index variable t that tracks the counts of months since the
beginning of the dataset.

FIGURE 1.15 Time series data for 12 years of the monthly total count of international air passengers,
1949 through 1960.

(a) Passenger counts
Date

1950

10
0

30
0

M
on

th
ly

 p
as

se
ng

er
s

50
0

1954 1958

(b) log passenger counts
Date

1950

lo
g

m
on

th
ly

 p
as

se
ng

er
s

6.
5

6.
0

5.
5

5.
0

1954 1958

> air$t <– 1:nrow(air)

> fitAirSLR <– glm(log(Passengers)~t, data=air)

> coef(fitAirSLR)

Confirming PagesConfirming Pages

Chapter 1 Regression 33

tad71671_ch01_001-054.indd 33 01/13/22 07:44 PM

The expected count of passengers increases by about 1% every month.

Seasonal Effects
This model just fits a line through the data in Figure 1.15b. It doesn’t capture any of the oscil-
lation around this line. This oscillating trend appears to be regular, trending up in summer
months and down in winter. This is a classic seasonal pattern and we should account for it in
the model. To do so, we can add monthly factor effects that encode the fact that, for example,
people travel more in July than they do in November. The model is then

 log (y t) = α + 𝛽t + γ m t + ε t (1.35)

where γ m t denotes a separate seasonal effect for each month mt (we are mixing in new greek
letters beyond α and β here because the indexing gets complicated). To fit this in R, you need to
encode Month as a factor and add it to your regression.

(Intercept) t

 4.81366828 0.01004838

> exp(coef(fitAirSLR)[“t”])

 t

1.010099

> air$Month <– factor(air$Month)

> levels(air$Month)

 [1] “1” “2” “3” “4” “5” “6” “7” “8” “9” “10” “11” “12”

> fitAirMonth <– glm(log(Passengers) ~ t + Month, data=air)

> round(coef(fitAirMonth),2)

(Intercept) t Month2 Month3 Month4 Month5

 4.73 0.01 –0.02 0.11 0.08 0.07

 Month6 Month7 Month8 Month9 Month10 Month11

 0.20 0.30 0.29 0.15 0.01 –0.14

 Month12

 –0.02

Noting that January is the reference month, absorbed into the intercept, we see that the highest
months for travel are in the summer (June through August) and the lowest months are Novem-
ber through February. The fitted values for this regression are plotted in Figure 1.16 alongside
the original data. The model appears to be doing a nice job of summarizing the passenger traf-
fic (on log scale). To illustrate what each component is doing, Figure 1.17 shows the decompo-
sition of this time series model into its two components: the fitted linear trend and the annual
seasonal oscillations.

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 34 01/13/22 07:44 PM

34 Chapter 1 Regression

Following the recipe we’ve just worked through, modeling the trends in time series
data is easy. If your data include dates, then you should create indicator variables for, say,
each year, month, and day. A best practice is to proceed hierarchically: if you are going to
include an effect for May-1955, then you should also include broader effects for May and
for 1955. This allows the model to use the broad effects as baselines, and the May-1955
effect will only summarize deviations from this base. In the language of Chapter 3, May-
1955 is shrunk toward generic levels for May and 1955. The same logic applies for space: if
you condition on counties, then you should also include state and region effects. This hier-
archical approach is not strictly necessary when you are fitting OLS regressions via glm,
but it will be crucial once we start to use the model regularization and selection techniques
of Chapter 3.

FIGURE 1.16 Airline passenger regression modeling using linear and monthly trends.

Data

6.
5

6.
0

5.
5

lo
g

pa
ss

en
ge

rs
5.

0

1950 1952 1954 1956
Date

1958 1960

Fitted

FIGURE 1.17 Decomposition of the fitted time series model for air travel.

Date
1950

4.
8

5.
2

5.
6

Li
ne

ar
 tr

en
d

Se
as

on
al

 tr
en

d

6.
0

5.
3

5.
4

5.
5

5.
6

5.
7

1954 1958
Date

1950 1954 1958

Confirming PagesConfirming Pages

Chapter 1 Regression 35

tad71671_ch01_001-054.indd 35 01/13/22 07:44 PM

1.5.2 Autoregressive Models
Consider the air travel regression residuals shown in Figure 1.18a. That is a common approach
to see what or how much is left unexplained by the model. When you look at this time series of
residuals, you are looking for any patterns in how the residuals move over time. In this case, even
though the combination of a linear trend and monthly effects did a decent job of predicting log pas-
senger counts, there appears to be a stickiness in the residual time series: when they are high one
month, they tend to be high the next month. More precisely, they appear correlated in time, such that
et = (yt – ŷt) is dependent upon et–1. Diving deeper, Figure 1.18b plots the residuals et against their
lagged values, et–1. There is a clear relationship between the current value and the one previous. This
means that yt–1 can be used to predict yt. It also implies that our regression residuals are now correlated,
which violates the basic linear regression assumption of independence between residual errors.

This phenomenon is called autocorrelation: correlation between periods in a time series. Time
series data is simply a collection of observations gathered over time. For example, suppose y1 . . . yT
are weekly sales, daily temperatures, or five-minute stock returns. In each case, you might expect
what happens at time t to be correlated with time t – 1. For example, suppose you measure tempera-
tures daily for several years. Which would work better as an estimate for today’s temperature:

 • The average of the temperatures from the previous year?
 • The temperature on the previous day?

In most cases, yesterday’s temperature is most informative. That means you view the local
dependence as more important than the broad annual pattern.

Autocorrelation Function
You can summarize dependence between subsequent observations with an autocorrelation
function (ACF) that tracks ‘lag-l’ correlations.

 acf (l) = cor (ε t , ε t−l) (1.36)

Figure 1.19 shows the ACF for our airline regression residuals. You can produce this with the
command below.

FIGURE 1.18 Residuals from the airline passenger regression including a linear time trend and monthly
effects, plotted against time in (a) and against the lagged residuals in (b).

(a) et vs t

Date
1950

–0
.15

–0
.0

5
0.

05

R
es

id
ua

ls

1954 1958

(b) et vs et–1

Lagged residual
–0.15

–0
.15

–0
.0

5
0.

05

R
es

id
ua

l

–0.05 0.05

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 36 01/13/22 07:44 PM

36 Chapter 1 Regression

The plot confirms our visual inspection of the residual plots: there is significant correlation in
the residuals. The correlation between yt and yt–1 is around 0.8, which is pretty high. It indicates
that 64% of the variation in et could be explained through a simple linear regression onto et–1
(from 0.82 using our R2 formula for linear regression).

How do you model this type of data? Consider a simple cumulative error process, where
each εt is random with mean zero:

 y 1 = ε 1 ,

 y 2 = ε 1 + ε 2 , ⋮
 y t = ε 1 + ε 2 + … + e t

Each yt is a function of every previous observation all the way back to the first observation.
This implies

 y t = ∑
s = 1

t
 ε s = y t−1 + ε t (1.37)

such that you can define yt in terms of yt–1 and εt. This means that 𝔼[y t | y t–1] = y t–1 and all you
need to know to predict t is what happened at t – 1. The model in (1.37) is called a random
walk. It is defined by the fact that the expectation of what will happen next is always what hap-
pened most recently.

Random walks are one type of a general class of autoregressive (AR) models. In an autore-
gressive model of order one, you have

 AR (1) : y t = β 0 + β 1 y t−1 + ε t (1.38)

This is just a simple linear regression model, where yt is the response and lagged yt–1 is the
input. The random walk of (1.37) corresponds to β1 = 1, and in a random walk any nonzero
β0 is referred to as drift. But β1 can take all sorts of values, and you can complicate (1.38)
by adding in whatever covariates that are also useful to predict yt. Or, to think about it another
way, you can add an AR(1) term to any regression where you suspect correlation between
residuals.

FIGURE 1.19 ACF for the residual time series shown in Figure 1.18. Note that acf(0) = 1 because this is
the correlation between yt and itself. The dashed horizontal line marks a rough calculation on the threshold
for “significant” autocorrelations.

0 5 10 15 20
Lag

–0
.2

0.
2

0.
6

1.0
A

C
F

> plot(acf(fitAirMonth$residuals))

Confirming PagesConfirming Pages

Chapter 1 Regression 37

tad71671_ch01_001-054.indd 37 01/13/22 07:44 PM

Example 1.10 Airline Passenger Counts: Accounting for Autocorrelation To fit an AR(1)
model, all you need to do is to create lagged values of your response and then include them
in the regressions. To do this with the airline passenger counts, you can create a new column
called lag1 and fill it with the previous month’s passenger counts.

> air$lag1 <– c(NA, air$Passengers[–nrow(air)])

> air[1:3,]

 Year Month Passengers date t lag1

1 49 1 112 1949–01–01 1 NA

2 49 2 118 1949–02–01 2 112

3 49 3 132 1949–03–01 3 118

Notice that lag1 for the first observation is empty (set to NA) because we don’t know the pas-
senger counts for December 1948. When we run our regression with an AR(1) term, we will
want to exclude this first observation from the training data; glm actually does this automati-
cally, because it skips observations containing NA values. Fitting the model is straightforward:
you just add this lagged variable to your R formula (on log scale, to match the response).

> fitAirAR1 <– glm(log(Passengers) ~ log(lag1) + t + Month,
data=air)

> coef(fitAirAR1)[“log(lag1)”]

log(lag1)

0.7930716

The resulting coefficient on the AR(1) term is 0.79. That means that each month’s log counts are
expected to be about 80% of the previous month’s, before you add the linear and monthly trend
effects. Figure 1.20 shows the resulting residuals and their ACF plot. Now, the residuals appear

FIGURE 1.20 Residuals for the airline passenger regression that includes an AR(1) term and linear and
monthly trends, showing them against time in (a) and their ACF in (b).

(a) (b)
Date Lag

1950

–0
.10

–0
.0

5
0.

00

R
es

id
ua

ls

0.
05

1.0
0.

6
0.

2
A

C
F

–0
.2

1954 1958 0 5 10 15 20

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 38 01/13/22 07:44 PM

38 Chapter 1 Regression

to be completely random from one month to the next (contrast with the residual time series in
Figure 1.18). It appears the single lag term solved the bulk of our autocorrelation problems. For
example, in Figure 1.20b there are no autocorrelations larger than 0.2 at any of the time lags.

Properties of AR Models
The AR(1) model is simple but hugely powerful. If you have any suspicion of autocorrelation,
it is a good move to include lagged response as an input. The coefficient on this lag gives you
important information about the time-series properties.

 • If |β1| = 1, you have a random walk.
 • If |β1| > 1, the series diverges and will move to very large or small values.
 • If |β1| < 1, the values are mean reverting.

Random Walk
In a random walk, the series just wanders around, and the autocorrelation stays high for a long
time. See Figure 1.21. More precisely, the series is nonstationary: it has no average level that it
wants to be near but rather diverges off into space. For example, consider the daily Dow Jones
Average (DJA) composite index from 2000 to 2007, shown in Figure 1.22a. The DJA appears
as though it is just wandering around. Sure enough, if you fit a regression model it looks like a
random walk.

> dja <– read.csv(“dja.csv”)[,1]

> n<–length(dja)

> coef(ARdj <– glm(dja[–1] ~ dja[–n]))

(Intercept) dja[–n]

 7.054185 0.997643

FIGURE 1.21 A simulated random walk and its ACF.

(a) (b)

0 5 10 15 20

0.
0

0.
4

0.
8

Lag

A
C

F

0 50 100 150 200

0
5

10
15

20
25

Index

R
an

do
m

.w
al

k

Confirming PagesConfirming Pages

Chapter 1 Regression 39

tad71671_ch01_001-054.indd 39 01/13/22 07:44 PM

The AR(1) term has a coefficient very near to one.
However, when we switch from prices to returns, (yt – y t –1)/ y t –1 , we get data that looks

more like pure noise as shown in Figure 1.22b. Rerunning the regression on returns, we find
that the AR(1) term is now very close to zero.

FIGURE 1.22 Dow Jones Average daily value (a) and returns (b) from 2000 to 2007.

0

(a) (b)

500 1000
Day

D
JA

20
00

30
00

40
00

1500 2000 0 500 1000
Day

D
JA

 r
et

ur
ns

0.
08

0.
04

0.
00

–0
.0

4

1500 2000

> returns <– (dja[–1]–dja[–n])/dja[–n]

> coef(glm(returns[–1] ~ returns[–(n–1)]))

 (Intercept) returns[–(n – 1)]

 –0.0001138386 –0.0144411430

This property is implied by the series being a random walk: the differences between yt and yt–1
are independent. If you have a random walk, you should perform this “returns” transformation
to obtain something that is easier to model. For example, it is standard to model asset price
series in terms of returns rather than raw prices.

Diverging Series
For AR(1) terms larger than one, life is more complicated. This case results in what is called a
diverging series because the yt values move exponentially far from y1. For example, Figure 1.23a
shows how quickly the observations diverge even for β1 = 1.02, very close to one. Since these
series explode, they are useless for modeling and prediction. If you run a regression and find
such an AR(1) term, you are likely missing a trend variable that needs to be included in your
regression.

Mean Reverting Series
Finally, the most interesting series have AR(1) terms between –1 and 1. These series are called
stationary because yt is always pulled back toward the mean. These are the most common, and
most useful, type of AR series. The past matters in a stationary series, but with limited horizon
and autocorrelation drops off rapidly.

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 40 01/13/22 07:44 PM

40 Chapter 1 Regression

An important property of stationary series is mean reversion. Think about shifting both yt
and yt–1 by their mean μ. A simple AR(1) model holds that

 y t − μ = β 1 (y t−1 − μ) + ε t

Since |β1| < 1, yt is expected to be closer to the μ than yt–1. That is, each subsequent observation
is expected to be closer to the mean than the previous one. Mean reversion is common and if
you find an AR(1) coefficient between −1 and 1 it should give you some confidence that you
have included the right trend variables and are modeling the right version of the response. The
AR(1) component of our regression for log passenger counts was mean reverting, with each yt
expected to be 0.79 times the response for the previous month.

It is also possible to expand the AR idea to higher lags.

 AR(p) : y t = β 0 + β 1 y t−1 + … β p y t−p + ε t

The model selection and regularization methods of Chapter 3 make it straightforward to let the
data choose the appropriate lags. Using those tools, you can feel free to consider bigger p in

FIGURE 1.23 Various AR(1) time series examples.

0 50 100 150 200
Index

−8
0

−6
0

−4
0

−2
0

0

Ex
pl

od
in

g.
se

ri
es

(a) An exploding series with AR(1) co-
 e°cient β1 = 1.02.

0 20 40 60 80 100

0
2

−4
−2

4

Index

N
eg

co
r.

se
ri

es

(b) A stationary series with β1 = –0.8. It is possible
 to have negatively correlated series, but you
 will not see these often in practice.

(c) A stationary (i.e., mean-reverting)
 time series with β1 = 0.8.

(d) ACF for the series in Figure 1.23c.

0 50 100 150 200

0
−2

2
4

Index

St
at

io
na

ry
.se

ri
es

0 5 10
Lag

15 20

0.
8

A
C

F
0.

4
0.

0

Confirming PagesConfirming Pages

Chapter 1 Regression 41

tad71671_ch01_001-054.indd 41 01/13/22 07:44 PM

your AR(p). The only problem is that the simple stationary versus nonstationary interpretations
for β1 no longer apply if you include higher lags. In addition, the need for higher lags some-
times indicates that you are missing a more persistent trend or seasonality in the data.

Before moving to the next section, it is worth emphasizing how we have been dealing with
all sorts of time series dependence: we just engineer features to explain that dependence and
include them in our regression models. It really is that easy. Some techniques based on data
sampling, such as the bootstrapping or cross validation of next chapters, need to be adapted for
dependent data. But with regression you have a great tool set for dealing with time dependence.

1.5.3 Panel Data
A common scenario for analysis has multiple time series together in a single dataset. You might
have sales data over time for a number of different stores. Or, you might have a longitudinal
survey where you ask a set of customers the same questions at a regular interval to see how
their opinions change over time. This type of data—a stack of time series for multiple obser-
vation units—is called panel data. You have N units (e.g., stores or individuals) and a time
series of length Ti for each unit. Your total number of observations is n = ∑ i=1 N T i . When all of
the time series are the same length, such that Ti = T for all units, it is called a balanced panel;
otherwise it is an unbalanced panel.

Panel data is especially common in economics applications, and econometricians have
an extensive toolset for estimating models on this type of data. The literature in this area is
pretty dense and jargon heavy, but the plm package for R (Croissant and Millo (2008)) is an
extensively documented library of tools from econometrics for panel data analysis. Fortu-
nately, with modern computing techniques (especially the regularization and sparse matrix
tools from Chapter 3), you can do the state of the art of panel data analysis using standard
regression models. As we’ve stated before in this chapter, time series analysis is just regres-
sion analysis where you have engineered and included some special features. The same holds
true for panel data.

Example 1.11 Hass Avocado Panel Data We will introduce panel data analysis through an
analysis of weekly sales by U.S. region for Hass avocados. Avocados have become enormously
popular in recent years and the Hass variety is dominating the market. The Hass Avocado
Board (HAB) was formed in 2002 to maintain and expand demand for avocados in the United
States. The dataset hass.csv contains data from HAB. These data represent weekly retail
sales of Hass avocados measured directly via cash register transactions. The data include sales
from supercenters, club stores, national chains, regional chains, independent grocers, and the
military. They do not reflect sales from farm stands, drug stores, or convenience outlets.

The data include unit sales and the average sales price per unit (ASP) aggregated by week
and by region.

> hass<–read.csv(“hass.csv”,stringsAsFactors=TRUE)

> head(hass,3)

 region date asp units

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 42 01/13/22 07:44 PM

42 Chapter 1 Regression

The first things we will do are to convert the date into a Date variable, being careful to check
the date formatting, and then order the data frame by region and date:

1 Albany 12/27/2015 1.33 64236.62

2 Albany 12/20/2015 1.35 54876.98

3 Albany 12/13/2015 0.93 118220.22

> hass$date <– as.Date(hass$date,format=’%m/%d/%Y’)

> hass<–hass[order(hass$region,hass$date),]

> head(hass,3)

 region date asp units

52 Albany 2015–01–04 1.22 40873.28

51 Albany 2015–01–11 1.24 41195.08

50 Albany 2015–01–18 1.17 44511.28

This step of ordering by unit and date is a good practice with panel data, since it helps you
stay organized during data manipulation. It will be essential for our calculation of lagged
variables below.

We will investigate the sales-price elasticity of avocados by regressing log units sold onto
log ASP. The most basic panel data model doesn’t include any real time series modeling:
you just regress your response of interest (log(units)) on the explanatory variables inter-
est (log(asp)). (Recall our earlier discussion of Log-Log models and price elasticity around
Equation 1.8.) The key step is that you need to account for the fact that your data are grouped
according to the panel units—in our case grouped by region. You will expect different aver-
age weekly avocado sales in Boise than you would get in Los Angeles. You deal with this by
including the regions as factor effects in the regression. The model is then

 log (𝚞𝚗𝚒𝚝𝚜 it) = α i + β log (𝚊𝚜𝚙 it) + ε it (1.39)

The subscript indexing here is important: xit indicates the value at the tth time series observation
for the ith region. This double indexing references a unique row of the hass data frame. How-
ever, the region effects αi are only indexed by region, such that every time series observation
from the same region is fit as having this region-specific mean. These αi are called fixed effects
in a panel data setting. Including them is equivalent to removing the regional mean from your
sales data before fitting the regression. With panel data it is important that you include these
fixed effects; otherwise, the difference in baseline sales between, say, Boise and Los Angeles
will be included in your estimate of β.

We’ll fit this model with glm.

> fitHass <– glm(log(units) ~ log(asp) + region, data=hass)

> coef(fitHass)[“log(asp)”]

 log(asp)

–0.7283443

This estimated elasticity implies that expected unit sales drop by 0.73% for every 1% increase
in ASP. This is a fine result in the context of the model we have specified, but it is suspicious

Confirming PagesConfirming Pages

Chapter 1 Regression 43

tad71671_ch01_001-054.indd 43 01/13/22 07:44 PM

if you want to interpret β in terms of what grocers experience in terms of lost or gained sales
when they change prices. In particular, elasticities greater than −1 indicate what economists
call inelastic products. For such products, the grocers could increase revenue (i.e., total sales
before costs) by increasing prices. Finding β = –0.73 as the sales-price elasticity for avocados,
which suggests that they are an inelastic good, is surprising. If you are interested to learn more,
see the nearby box on this topic. Regardless, we will find soon that if we control for additional
influences on sales, then avocados no longer appear inelastic.

First, we note that the economics literature on pricing and sales-price elasticities is deep
and complex. There is no single framework that describes to any degree of fidelity how
firms set prices, and the prices you experience as a consumer are driven by a massive
variety of influences. Simple log-log regression models like those we use throughout this
chapter measure the short-term elasticity to local changes in price for a single product. This
means that a number of price-demand effects are not included without further modeling.

 • The long-term elasticity to prices can be different from the short term. If your
store increases prices consumers may still buy the items out of convenience, but
eventually they will shift their entire shopping trip to a store that offers better
value across a broad range of items. Your log-log regression doesn’t capture this
long-term view, and a firm that optimizes too much for short-term profit risks los-
ing customers in the long term.

 • Our regression models measure the immediate customer sales variation as a
function of relatively small price changes around the average price (i.e., within
the range of observed price variation). If the average price increases by a large
amount (e.g., if avocados suddenly doubled in average price) then the measured
elasticities would likely change. You should view your measured elasticities
from a simple log-log model as applicable only within the observed range of
current prices.

 • Stores sell many products. Some may be heavily discounted to get people into the
store, or because they are “basket builders” that encourage people to buy other
(more profitable) products. In a more sophisticated demand analysis, it is com-
mon to incorporate cross-price elasticities that measure how changes in price on
one product (e.g., pasta) influence the sales on complementary products (e.g.,
pasta sauce).

Other issues include the impact of supply (if you have too many avocados you might
discount them to avoid spoilage), temporal substitution (if you discount one day, then cus-
tomers can stock up and buy less in the future), and product substitution (price changes on
one product can cause people to switch to or from another item).

Despite these limitations, the log-log regressions of this chapter are a common and
useful tool for understanding pricing and demand. To see why we say that -0.73 is a suspi-
cious elasticity for avocados, consider that a sales-price elasticity greater than −1 implies

Pricing, Elasticities, and the Limits of Log-Log
Regression

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 44 01/13/22 07:44 PM

44 Chapter 1 Regression

Two-Way Fixed Effects
The likely issue here is that we are missing an underlying variable that is correlated with both
prices and sales. Such “omitted variables” can make it difficult to interpret the estimated rela-
tionships in your regression (like the one between price and sales). In panel data, you can
mitigate this issue by including fixed time effects. If we include fixed effects for each week
then we will be controlling for events or seasonal effects that impact both the price and sales
of avocados. For example, events such as the Super Bowl cause Americans to eat a lot of avo-
cados (guacamole!) and grocers will want to increase prices on their limited supply, leading to
a positive relationship between price and sales. If we include a fixed effect for the Super Bowl
week, this positive relationship will be explained by that effect rather than being incorporated
into our price elasticity estimate.

We have now talked about having a region fixed effect for each time series in our panel and
having a week fixed effect for each time point across all series. The term “fixed effect” might
be a bit confusing if you haven’t seen it before. There is nothing complicated going on here: we
are simply including additional factor variables into our regression (a factor for region and a
factor for week). The “fixed” label is used in panel data analysis to differentiate from so-called
random effects, where you allow for correlations between the error terms in your analysis. We
consider this type of dependence between errors in the next chapter as part of our uncertainty
quantification. However, this is not a replacement for including the proper fixed effects in your
regression specification. These fixed effects play a crucial role in accounting for the influence
of unobserved factors, such as different tastes or budgets across regions or the Super Bowl
effect described above.

Getting back to our avocado sales analysis, an alternative model with week fixed effects is

 log (𝚞𝚗𝚒𝚝𝚜 it) = α i + δ t + β log (𝚊𝚜𝚙 it) + ε it (1.41)

Here, δ t is the fixed effect for week t.

that a grocer could raise total revenue by raising prices. To see this, take Equation (1.39)
and do a bit of basic algebra to write

 log (𝚞𝚗𝚒𝚝𝚜 it) = α i + β log (𝚊𝚜𝚙 it) + log (𝚊𝚜𝚙 it) − log (𝚊𝚜𝚙 it) + ε it
 ⇒ log (𝚞𝚗𝚒𝚝𝚜 it × 𝚊𝚜𝚙 it) = α i + (β + 1) log (𝚊𝚜𝚙 it) + ε it

 (1.40)

Now, units × asp is your total revenue (units sold times price). And if β > –1, then (1.40)
leads to β + 1 > 0 and you have a positive revenue-price elasticity. If we apply this elasticity
to set prices at each store, it implies that the grocers can increase revenue by increasing prices.

Grocers are not attempting to maximize short-term profit (revenue minus costs) on
every item: they need to worry about long-term customer retention and the cross-price
elasticities. However, it is a bit unusual to see average prices so low that they could be
raised without negatively impacting revenue. Unless cheap avocados play an outsized
role in basket building or attracting people to shop, then the inelastic demand implied
by β ̂ = − 0.73 suggests that average prices might drift upward until consumers start to
become more price sensitive. More likely, however, is that our elasticity here is “polluted”
by effects on sales separate from price.

To learn more about pricing and demand, look to Chapter 6 where we discuss a higher
dimensional log-log elasticity regression in the context of beer pricing.

Confirming PagesConfirming Pages

Chapter 1 Regression 45

tad71671_ch01_001-054.indd 45 01/13/22 07:44 PM

Sure enough, the elasticity is now close enough to -1 to seem plausible. At a sales-price elastic-
ity of −1, the grocers can’t make more revenue by raising prices.

Note that the model in Equation (1.41) is often referred to as the two-way fixed effects
model. It is very common in economic analysis, since it allows you to control for unobserved
influences in both time (t) and region (i). Since it is such a common model, we caution you to
remember that it is not magic and you can still get bad estimates if, for example, the elasticities
are different for each region or if there is an unmodeled time trend in each region (e.g., if sales
are increasing at different linear rates in each region). As we’ve said before: panel data analysis
is just applied regression, so you need to think about the process you are trying to model and not
assume that you can just fit a common model and interpret the fitted values the way you want.

Adding AR Terms
We can further improve the model by including lagged variables. First, we can include lagged
log unit sales to account for the autoregressive correlation across weeks in the same region.
Just like the weather, this week’s avocado sales in your city are almost certainly correlated with
last week’s sales (even after controlling for price and the major regional or weekly trends). But
we can also include the lagged log price effect. Such lagged price effects are often a good idea
to include because of pull forward in demand. If you have a deal on avocados, then customers
will stock up, and the next week they won’t buy avocados because their pantry is already full.

The full regression model is then

 log (𝚞𝚗𝚒𝚝𝚜 it) = α i + δ t + β 1 log (𝚞𝚗𝚒𝚝𝚜 i,t−1) + β 2 log (𝚊𝚜𝚙 it) + β 3 log (𝚊𝚜𝚙 i,t−1) + ε it (1.42)

Calculating the lagged variables for panel data takes a bit of care. We need to group the data
into its region-level time series and calculate the lags for each individual time series. We will
use the tapply function to do this. tapply takes any vector as its first argument, splits the
vector up according to the factor levels in its second argument, and then applies to the splits
whatever function you give as its third argument. Hence, we can use it to calculate things like
the maximum for each subgroup.

To fit this in R, you create a factor variable for week and add it to the R formula.

> hass$week <– factor(hass$date)

> fitHassDF <– glm(log(units) ~ log(asp) + region + week,
data=hass)

> coef(fitHassDF)[“log(asp)”]

 log(asp)

–0.9465598

> tapply(c(1:5), c(“a”,“b”,“a”,“b”,“c”), function(x) max(x))

a b c

3 4 5

Since we ordered the hass data frame in the beginning of this example (which is crucial for
this to work), we can use tapply to split asp and units into their region-level time series and

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 46 01/13/22 07:44 PM

46 Chapter 1 Regression

The unlist command is necessary because tapply returns here a list of vectors, one for each
lagged time series, and you want to collapse them into a single vector. You can confirm by
inspection that we have things lined up properly. For example, the avocado ASP in Albany
for the week of January 4 is $1.22, and this is also the lagged avocado ASP for the week of
January 11.

Fitting the model with glm, you can see that the estimate of price sensitivity has increased:

create lagged variables within each region (same as we did to create lagged passengers for the
airline example).

> hass$lag.asp <– unlist(tapply(hass$asp, hass$region,

+ function(x) c(NA,x[–length(x)])))

> hass$lag.units <– unlist(tapply(hass$units, hass$region,

+ function(x) c(NA,x[–length(x)])))

> head(hass,3)

 region date asp units lag.asp lag.units

52 Albany 2015–01–04 1.22 40873.28 NA NA

51 Albany 2015–01–11 1.24 41195.08 1.22 40873.28

50 Albany 2015–01–18 1.17 44511.28 1.24 41195.08

> fitHassLags <– glm(log(units) ~ log(lag.units) + log(asp)

+ + log(lag.asp) + region, data=hass)

> coef(fitHassLags)[2:4]

log(lag.units) log(asp) log(lag.asp)

 0.7734225 –1.4025468 1.2631973

The model estimate says that Hass unit sales decrease by about 1.4% per every 1% price
increase. Notice that the AR(1) term on lagged units is 0.77, indicating a stationary and mean
reverting autocorrelation process. Finally, the effect of lagged log ASP is positive. Interpreting
this through the lens of pull forward in demand, expected unit sales in a given week drop by
1.3% per every 1% price decrease in the week prior. That is the effect of customers stocking up
on those cheap avocados.

1.6 Spatial Data
We’ve shown that you can model all sorts of time series dependence using basic regression
tools. This same lesson applies to spatial dependence: space is just like time but with another
dimension. The same as you can include monthly or weekly factors in your regressions, you
can include geographic factors like region or city. This approach of adding spatial fixed effects
will be your main tool in managing dependence in spatial data. To see how this works in

Confirming PagesConfirming Pages

Chapter 1 Regression 47

tad71671_ch01_001-054.indd 47 01/13/22 07:44 PM

practice, consider the example of our next chapter: we will be modeling the listing price for
used cars, and always include the city where a car is listed as a spatial fixed effect.

Modeling autocorrelation in spatial data is a bit more complicated than it is for time series.
Whereas time series are ordered, spatial data is not. In AR models the current observation
is regressed onto the previous observation, but with spatial data there is no simple notion of
“previous.” There do exist spatial autoregressive (SAR) models, where each observation is
regressed onto the observations of its “neighbors.” For example, when processing image data
you can regress the value at one pixel onto the average of the neighboring pixels. These SAR
models work fine for spatial data that is observed on a regular grid, such that each observa-
tion is evenly spaced from its neighbors. Unfortunately, most examples of spatial data that we
encounter in practice do not live on a nice grid. Instead, you need models for autocorrelation
that allow for the observations to be unevenly spaced from each other.

1.6.1 Gaussian Process Modeling
Gaussian processes (GPs) are the dominant modeling framework for spatially dependent data.
GPs are models that smooth predictions across observations according to distances between
their locations. They are a relatively simple example of the sort of stochastic process models
that are commonly used for such purposes. However, to describe GPs we need to talk about
multivariate distributions that describe the joint distribution for multiple observations.

Suppose that you have two response observations yi and yj observed at two different loca-
tions with coordinates si and sj. These can be latitude and longitude coordinates, or they can
correspond to any other spatial coordinate system that makes sense for your data. A Gaussian
process models the responses at two locations as draws from a Gaussian distribution:

 [
 y i y j] ~N ([

 μ i μ j] , σ 2 [
1 + δ

 κ(s i , s j) κ(s i , s j)

 1 + δ]) (1.43)

Equation (1.43) is a multivariate distribution. It describes the expectation (μi and μj) and vari-
ance (σ2(1 + δ)) for each variable, as well as the covariance between the responses. The expec-
tations can be functions of covariates, say μ i = x i ′ β , or a simple mean such that μi = μj = μ. The
variance is determined by σ2 and the nugget δ. This nugget term measures how much variance
you will have for repeated observations at the same location. If you have two observations at
the same spatial location, then δ represents the amount that they tend to differ from each other.

The covariance between observations is determined by κ(si, sj), the kernel function. It
defines the correlation between the corresponding responses, such that

 cor(y t , y s) =
κ(s i , s j) _ 1 + δ (1.44)

and the covariance between these responses is σ2κ,(si, sj). The form for this kernel function
dictates how the GP models spatial correlation. For example, the common exponential kernel
function is

 κ(s i , s j) = 1 ____________________________
exp [(

 (s i1 − s j1) 2 _ ρ 1 +
 (s i2 − s j2) 2 _ ρ 2)]

 (1.45)

Here, correlation decreases with the exponentiated distance between locations. The range
parameters, ρ1 and ρ2, allow for different units of distance in your two coordinates (say lat and

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 48 01/13/22 07:44 PM

48 Chapter 1 Regression

long). The kernel from (1.45) results in smoothly decaying dependence between responses, yi
and yj, as a function of distance between inputs, si and sj. Note that this κ(·, ·) produces values
between zero and one, since κ(si, sj) = 1 if si = sj and it approaches zero as the locations get
further apart.

GP Predictions
Predictions from a GP combine information in the mean function with the information from
observations at nearby locations. Consider prediction (forecasting) at a new location sf given
a single observation yi at location si. The conditional expectation for the response at the new
location is

 𝔼[y f | y i] = μ f +
κ(s f , s i) _ 1 + δ (y i − μ i) (1.46)

This shows the prediction will be a combination of the mean for the new observation, μf, and
the correlation between yf and yi multiplied by the residual error yi – μi. When the residual error
is positive, then the residual at yf is also expected to be positive. The strength of this relation-
ship is determined by the kernel function and the distance between locations. When you have
many observations, the analogue to (1.46) has that the prediction for yf is a function of the
matrix of correlations between yf and those observations and the vector of residual errors.

Estimating and predicting from GP models is not a simple exercise. You need to consider
the correlations between all pairs of locations in your data in order to estimate the range, vari-
ance, and mean parameters. And you need to do the matrix-vector calculations to calculate
predictions that depend upon the correlations with residuals errors—that is, to calculate the
n-observation analogue to (1.46). This gets computationally expensive when you have many
observations (many locations) in your dataset. For big datasets, an efficient technique is to
consider a subsample of neighboring observations for each location where you want to predict
the response. That is, if you want to predict at new location sk, then you fit a local GP that only
uses a fixed number of observations at locations near to sk.

Fitting GPs with laGP
To fit such local GPs in R, you can make use of the laGP package (Gramacy, 2015). It contains
the aGP function which takes as arguments your observed locations and responses, and a set
of new locations where you want to get predictions. The algorithm goes through each loca-
tion where you want to predict, and fits a local GP model to the set of nearby locations. The
argument end sets the number of observations used to estimate each local GP; if you set end
bigger, the algorithm takes longer to run but will consider a wider set of neighbors for each
location. The aGP function uses the efficient search algorithm described in Gramacy and Apley
(2015) to choose the most useful neighbors for use in each local GP fit. Detailed examples are
 provided in the vignette of Gramacy (2015) and in the package documentation.

Example 1.12 California Census Data: Gaussian Processes To illustrate GP estimation, we
will look at some (old) census data from California. In the CalCensus.csv dataset you have
the longitude and latitude for the center of each census tract in the state, along with some
statistics for that census tract. We will be focusing on the median values for income and home

Confirming PagesConfirming Pages

Chapter 1 Regression 49

tad71671_ch01_001-054.indd 49 01/13/22 07:44 PM

To understand the relationship between house prices and income, we can calculate the elastic-
ity between them using a log-log regression.

> ca <– read.csv(“CalCensus.csv”)

> ca[1,]

 longitude latitude housingMedianAge population households

1 –122.23 37.88 41 322 126

 medianIncome medianHouseValue AveBedrms AveRooms AveOccupancy

1 83252 452600 1.02381 6.984127 2.555556

value within each census tract, and investigating the relationship between them. Note that each
of these metrics has been trimmed to replace very large values with a threshold: income is
thresholded at $150k and home value is thresholded at $500k.

> linc <– log(ca[,“medianIncome”])

> lhval <– log(ca[,“medianHouseValue”])

> summary(glm(lhval ~ linc))

...

Coefficients:

 Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.569235 0.065110 54.82 <2e–16 ***

linc 0.814520 0.006221 130.92 <2e–16 ***

Using what we know about interpreting coefficients in log-log regression, the estimated coef-
ficient on linc says that median home prices should increase by about 0.8% per every 1%
increase in income.

We might want to be skeptical about that result, however. There is a likely dependence in
the home values across neighboring census tracts: people can easily commute from their home
in one census tract to their work in another one. Indeed, Figure 1.24 shows a strong pattern of
spatial correlation in both incomes and home values across California (it also shows that the
highest home prices are tightly concentrated in the SF Bay Area and along the coast—the color
maps here are calculated on percentiles of the distributions—while incomes are more evenly
distributed). Thus the estimated relationship between income and home values here might be
polluted by the incomes and home values in neighboring census tracts. This is the same as how
you can get polluted estimates for regression coefficients in time series if you do not control
for autocorrelation.

To control for this spatial dependence, you can use a GP to model the error structure for
log home value conditional upon log income. However, the laGP package doesn’t allow for
regression functions to specify the response mean; it applies a single fixed mean, such that
μi = μj = μ in our notation of Equation (1.43). In a preview of Chapter 6, however, we can
proceed by using GP predictions to first residualize both the income and home values against
their predicted value given the spatial correlation between observations. That is, we’ll use
a GP model to obtain fitted values for income and home value, calculate the residuals (the

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 50 01/13/22 07:44 PM

50 Chapter 1 Regression

difference in the fitted and observed values), and then regress the residuals for home value
onto the residuals for income. The regression relationship between these residuals then tells
you the elasticity for home values on incomes after having controlled for spatial dependence
across census tracts.

Say that y denotes log median home values (lhval) and d denotes the log median incomes
(linc), and the full samples for each are y and d. Then we will use GP models to estimate
 y ̂ i = 𝔼[y i |y] and d ̂ i = 𝔼[d i |d] . The residuals are calculated as y ˜ i = y i − y ̂ i and d ̃ i = d i − d ̂ i for
each census tract i. The final regression for y ˜ i onto d ̃ i gives us an unpolluted estimate of the
elasticity between incomes and home prices. Note that if you find this residualization confus-
ing, you can ignore the motivation here and just think about fitting two GPs: one to predict
income and the other to predict home values.

To fit the GPs with aGP, you pull out longitude and latitude as the spatial coordinates
both for the current observations and the locations where you want to predict. We use end=20
here so that each fitted GP will use 20 local census tracts.

FIGURE 1.24 Median home value and income by census tract.

Home value

(a) (b)

15k
120k
180k
265k
500k

Income
5k
26k
35k
47k
150k

> library(laGP)

> s <– ca[,1:2] # long and lat

> gpinc <– aGP(s, linc, XX=s, end=20)

> gphval <– aGP(s, lhval, XX=s, end=20)

When you run this, it will take several minutes and print a lot of information. Recall that aGP
is fitting a unique GP for each of the locations where you want to predict—in this case, 20640
census tracts. The laGP package is actually very sophisticated under the hood, and if you
“compile” (i.e., turn the code into an executable computer program) correctly it can execute
each local GP in parallel across the many processors on your computer. However, this will
be tricky if you are not familiar with these tools (it is not as easy as loading the parallel

Confirming PagesConfirming Pages

Chapter 1 Regression 51

tad71671_ch01_001-054.indd 51 01/13/22 07:44 PM

library). You can run the code here without fancy parallel tricks and make yourself some
coffee or tea while it runs.

The resulting predictions at XX are in the mean entry of the fitted aGP objects. The fitted values
are plotted in Figure 1.25. Remember: these predictions are based on only the dependence between
nearby census tracts. We use these fitted values to calculate residuals for each of y and d and regress
the residuals onto each other. Note that you will get slightly different output since aGP is taking a
random sample from the posterior distribution (refer to the Bayes section in the next chapter).

> rinc <– linc – gpinc$mean

> rhval <– lhval – gphval$mean

> summary(glm(rhval ~ rinc))

...

 Estimate Std. Error t value Pr(>|t|)

(Intercept) –0.001351 0.001427 –0.947 0.344

rinc 0.353034 0.004942 71.438 <2e–16 ***

FIGURE 1.25 Log median home value and income, fitted values from laGP plotted against the
observed values.

(a)

9.5 10.5

13
.0

12
.0

11
.0

10
.0

11
.0

10
.0

9.
5

9.
0

8.
5

log median home value
11.5 12.5 8.5 9.0

log median income

G
P

fit
te

d
va

lu
e

G
P

fit
te

d
va

lu
e

9.5 10.5 11.5

(b)

The estimated elasticity is less than half of our previous estimate. Controlling for spatial depen-
dence through the GP-based residualization leads us to conclude that home values rise by about
0.4% per every 1% increase in income. It is intuitive that controlling for spatial dependence
reduces the elasticity. If incomes increase for jobs in one census tract then the influence on
home price will be spread over a large regional area (people can commute and move) rather
than concentrated in a single census tract. There will also be correlated spatial effects of, say,
school districts and neighborhood appeal.

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 52 01/13/22 07:44 PM

52 Chapter 1 Regression

The models we’ve fit here are the simplest form of GPs: they have a single fixed mean
parameter μ and a shared homoskedastic error structure (same σ2 and δ for every observation).
The tgp package implements a much wider array of GP models, including those that specify
linear regression functions as the mean and even models that use regression trees to split the
input space and fit a different GP within each partition (these are the Treed Gaussian Pro-
cesses of Gramacy and Lee 2008). Although the code and ideas are beyond the scope of this
book, you can look to Gramacy (2007) and Gramacy and Taddy (2010) for lengthy vignettes
illustrating the capabilities of tgp and use that as a stepping stone for more complex analyses
of spatial data.

Confirming Pages

tad71671_ch01_001-054.indd 53 01/13/22 07:44 PM

53

QUICK REFERENCE

This chapter moves rapidly through the methods of linear and logistic regression, and explains
how these methods are both applications of maximum likelihood estimation. The connection
between likelihood maximization and deviance minimization will be important for future chap-
ters where we consider the deviance as a part of more complex “loss functions” that are esti-
mated as part of machine learning. We also introduce the basic concepts of time series analysis,
with the main point being that regression techniques can be applied to analyze data that is
correlated across time.

Key Practical Concepts

 • To fit a linear regression in R, where your data frame data contains response y and
inputs 1, x2, etc, you use glm.

fit <- glm(y ~ x1 + x2, data=data)

Other formula options are in Table 1.2.
 • To fit a logistic regression, for when your y is binary, logical, or a two-level factor, you

just add family=“binomial”.

fit <- glm(y ~ x1 + x2, data=data, family=“binomial”)

 • Calling summary(fit) returns a summary of the model and coefficient estimation,
and coef(fit) just returns the regression coefficients.

 • For prediction, with new data in newdata with the same variable names as the data
used to fit your regression, use the predict function.

predict(fit, newdata=newdata)

This returns the linear equation predictions x′ β ̂ . If you have fit logistic regression and
you instead want predicted probabilities (after logit transformation), then you need to
add the argument type=“response”.

 • The glm object includes the residual deviance and null model null.deviance. The
R2 is then available as

1-fit$deviance/fit$null.deviance

 • To deal with time dependence, you can
 1. Create factor variables like month to represent time fixed effects.
 2. Add numeric variables like day to allow for time trends.
 3. Create lagged variables yt–1 as inputs to allow for autoregressive errors.

Confirming PagesConfirming Pages

tad71671_ch01_001-054.indd 54 01/13/22 07:44 PM

54 Quick Reference

 • Panel data has time series for many units together in the same dataset. You typically
want to include fixed effects both for each unit and each time period. You can use
tapply to calculate different lags for each time series.

 • Use the laGP package to fit a Gaussian Process (GP) that models spatial dependence
in data. A useful strategy is to use the residuals from a GP as data for a downstream
analysis—these residuals will have no spatial dependence on each other so you can use
standard regression methods for analysis.

Confirming Pages

tad71671_ch03_100-150.indd 100 01/13/22 07:31 AMtad71671_ch03_100-150.indd 100 01/13/22 07:31 AM

100

This chapter lays out the modern approach to building models from data:
use regularization to obtain paths of candidate models, and use estimates of
 out-of-sample predictive performance to choose the best model.

Section 3.1 Out-of-Sample Performance: Understand the concepts of
 overfitting and underfitting a model and how to avoid both situations.
Run cross-validation experiments to test out-of-sample predictive performance
of candidate models.

Section 3.2 Building Candidate Models: Estimate models to minimize a
penalized deviance, introducing regularization that helps you avoid overfit by
putting a price on model complexity. Build paths of models estimated under a
sequence using Lasso penalties.

Section 3.3 Model Selection: Use cross-validation experiments and
 information criteria such as AICc to select the best model from a Lasso path.

Section 3.4 Uncertainty Quantification for the Lasso: Adapt bootstrap
 algorithms to estimate sampling distributions for estimated parameters in
 models selected from a Lasso path.

3

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 101

tad71671_ch03_100-150.indd 101 01/13/22 07:31 AMtad71671_ch03_100-150.indd 101 01/13/22 07:31 AM

When you are estimating a model from data, your goal is always to use as much of the
true signal as possible to estimate your parameters. In doing this, you need to guard
against the noise in the data introducing noise in your estimates. Noise here can be

due to error terms or (in regression) the presence of spurious covariates that are not useful for
predicting the response. You need to use methods that pull apart the signal from the noise.

This is especially important in the high-dimensional (many parameter) settings that you
will encounter in data science. Today’s companies—whether in services, technology, manufac-
turing, or any other sector—have the opportunity to collect data on a huge number of signals
related to process improvement and product performance. Analyzing these signals requires the
use of high-dimensional models. These models have the flexibility to recognize complex pat-
terns, but they expose you to the risk of overfit: tuning the model to predict random errors in
your current sample rather than to predict the signal that will persist in new samples.

This chapter introduces the tools of regularization and model selection that allow you to
separate signal from noise and find the best model among many high-dimensional possibilities.
The basic principle is that you want to build models that predict well out-of-sample: when you
apply them to predict what will happen in the future, they give results that are accurate and
robust. More specifically, using the language of Chapter 1, you want models that will have a
low deviance when tested on data beyond your training sample. This chapter will give you the
recipes for constructing such models.

3.1 Out-of-Sample Performance
To understand the need to separate signal from noise, consider the issues of overfit and underfit
for regression on some simple simulated data. Figure 3.1 shows three different models fit to
data generated from a quadratic model with Gaussian errors (y = β0 + β1x + β2x

2 + ε). A simple
linear model fit to this data is underfit: it misses the curvature in the underlying true mean

FIGURE 3.1 Data were generated from a quadratic model y = β0 + β1x + β2x
2 + ε where ε is the random noise

(error) term generated from a Gaussian distribution. Panel (a) demonstrates underfit by fitting the simple linear
regression 𝔼 [y] = β 0 + β 1 x , panel (b) shows the fit for the true quadratic model, and panel (c) demonstrates overfit
when simply connecting the dots.

0

–2 0 2 4 6

5
10

15
20

(a) Underfit (b) Just right (c) Overfit

0

–2 0 2 4 6

5
10

15
20

–2 0 2 4 6

5
0

10
15

20

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 102 01/13/22 07:31 AMtad71671_ch03_100-150.indd 102 01/13/22 07:31 AM

102 Chapter 3 Regularization and Selection

function. The model in Figure 3.1c interpolates each point exactly (i.e., connects the dots)
and confuses the sample error (ε) for true signal. This model does a worse job predicting new
observations than a simpler model.

In Chapter 1, we introduced deviance as a measure of how tightly your model fits your
sample of data. The data that has been used to estimate the model is called the training sample,
and the deviance you calculate on the training data is called the in-sample (IS) deviance. If we
calculate the in-sample deviance for the model in Figure 3.1c, it will be zero: this interpolator
fits the data perfectly. But when we want to use a model for prediction on new data (i.e., to
predict the y for new x) the model fit will be no longer be perfect. The noise in new observa-
tions will be different from the noise in your training sample, and the jagged fitted surface in
Figure 3.1c will lead to predictions that are far from the new observations. The underfit model
in Figure 3.1a and the “just right” model in Figure 3.1b will also not have predictions that line
up perfectly with new observations. When deciding which model is “best,” we want to evaluate
which model will have the lowest out-of-sample (OOS) deviance: the lowest deviance when
evaluated against new data.

In-sample vs. Out-of-Sample Deviance
Recall from Chapter 1 that we defined the regression R2 as one minus the ratio of the deviance for
your fitted model over the deviance for a null model (i.e., the model with no input variables such
that you are estimating 𝔼 [y] = β 0). This is our measure of “the proportion of deviance explained
by your fitted model.” The same as how we have both in-sample deviance (that calculated on the
training data) and out-of-sample deviance (that calculated on new, or test, data), you have both
in- and out-of-sample R2. And the only R2 you ever really care about in practice is the OOS R2.

Suppose that you have data [x1, y1] . . . [xn, yn] and you use this data to fit β ̂ in a linear
regression model 𝔼 [y] = x′β . The in-sample deviance is then

 dev IS (β ̂) = ∑
i = 1

n
 (y i − x i ′ β ̂)

2
 (3.1)

For out-of-sample deviance, β ̂ is the same (still fit with observations 1 . . . n), but the deviance
is now calculated over m new observations (say n + 1, . . . , n + m):

 dev OOS (β ̂) = ∑
i = n + 1

n + m

 (y i − x i ′ β ̂)
2

Similarly, when calculating the null deviance for R2 you will look at (y i − y ¯) 2 where y ¯ is the
response mean in the training data; for IS null deviance you sum these errors over i = 1, . . . , n
and for OOS null deviance you sum over n + 1, . . . , n + m. And for other models you just
swap out squared errors for the appropriate deviance function (e.g., the logistic deviance of
Equation (1.33) when doing logistic regression). The distinction between IS and OOS deviance
(and R2) is massively important. When you have many input variables it is easy to overfit the
training data so that your model is being driven by noise that will not be replicated in new
observations. That adds errors to your predictions, and it is possible that the overfit model
becomes worse than no model at all.

Example 3.1 Semiconductor Manufacturing: OOS Validation As a real data example, let’s
consider quality-control data from a semiconductor manufacturing process. This industrial setting
involves many complicated operations with little margin for error. There are hundreds of diagnostic

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 103

tad71671_ch03_100-150.indd 103 01/13/22 07:31 AMtad71671_ch03_100-150.indd 103 01/13/22 07:31 AM

sensors along the production line, measuring various inputs and outputs in the process. The goal
is to build a model that maps from this sensor data to a prediction for chip failure. On the basis of
this model, chips at risk of failure can be flagged for further (expensive, human) inspection.

For training data we have 1500 observations of a length-200 vector x of diagnostic signals,
along with binary data on whether the chip was a failure. Note that the xj inputs here are actually
independent from each other (i.e., orthogonal): they are the first 200 Principal Component direc-
tions from a bigger set (see Chapter 8 on factorization). The response fail is binary (0 or 1).
We define a logistic regression model to predict failure probability from the diagnostics:

 p(𝚏𝚊𝚒𝚕 | x) = e x′β _
1 + e x′β

 = e β 0 + β 1 x 1 … + β k x k ____________
1 + e β 0 + β 1 x 1 … + β k x k

 (3.2)

You can fit this in R using glm.

> SC <- read.csv(“semiconductor.csv”)

> full <- glm(fail ~ ., data=SC, family=“binomial”)

Warning message:

glm.fit: fitted probabilities numerically 0 or 1 occurred

Note that you get the same perfect fit warning we had in the logistic regression of Example 1.6
in Chapter 1. This is symptomatic of overfit: it indicates that for some observations your fitted
regression assigns probabilities y ̂ = y (1 or 0), similar to how our 18 degree polynomial inter-
polates points perfectly in Figure 3.1c.

The IS-deviances are available in the fitted glm object.

> full$deviance

[1] 320.3321

> full$null.deviance

[1] 731.5909

> 1 - full$deviance/full$null.deviance

[1] 0.5621432

Since this is logistic regression, these metrics are based upon the binomial deviance from
Equation (1.33). We see that this regression has an R2 of 56%—more than half of the variation
in failure versus success is explained by the 200 diagnostic signals.

We can pull out the 200 p-values from summary.glm.

> pvals <- summary(full)$coef[-1,4] # -1 drops intercept

Figure 3.2a shows the distribution of the 200 p-values for tests of null hypothesis βk = 0 in this
regression. Recall from our FDR discussion in Chapter 2 that p-values from the null distribu-
tion have a uniform distribution; in contrast, here we see a spike near zero (indicating useful
diagnostic signals), while the remainder sprawl out toward one (most likely useless signals for
predicting failure). You can use the Benjamini-Hochberg algorithm to obtain a smaller model

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 104 01/13/22 07:31 AMtad71671_ch03_100-150.indd 104 01/13/22 07:31 AM

104 Chapter 3 Regularization and Selection

with controlled false discovery rate. Figure 3.2b illustrates the procedure for an FDR of 10%
(q=0.1), as executed using the code below.

FIGURE 3.2 The distribution of p-values for the 200 coefficients from the semiconductor regression. Panel (a) shows
the histogram of p-values, and (b) shows them ranked in increasing size. Red points in (b) are the 25 β ̂ k that are significant
using the BH algorithm for an FDR of 10%.

(a) (b)

60

1e
+

00
1e

–0
2

1e
–0

4
1e

–0
6

50
40

30

Fr
eq

ue
nc

y

20

0.0 0.2 0.4 0.6 0.8 1.0 1 2 5 10 20 50 100 200

10
0

p-value
p-

va
lu

e

Order

FDR of 0.1

> pvals <- sort(pvals[!is.na(pvals)])

> J <- length(pvals)

> k <- rank(pvals, ties.method=“min”)

> q=0.1

> (alpha <- max(pvals[pvals<= (q*k/(J+1))]))

[1] 0.01217043

> sum(pvals<=alpha)

[1] 25

This yields an α = 0.0122 p-value rejection cutoff and implies 25 significant regression coeffi-
cients (of which you expect 22 to 23 are true signals). This is illustrated by the code fdr_cut(pVals).

We can identify these 25 significant signals and rerun glm on only those variables, yielding
a much more parsimonious model.

> signif <- which(pvals < 0.0122)

> cut <- glm(fail ~ ., data=SC[,c(“fail”, names(signif))],

+ family=“binomial”)

> 1 - cut$deviance/cut$null.deviance # new in-sample R2

[1] 0.1811822

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 105

tad71671_ch03_100-150.indd 105 01/13/22 07:31 AMtad71671_ch03_100-150.indd 105 01/13/22 07:31 AM

Notice that the cut model, using only 25 signals, has IS R cut 2 = 0.18 . This is much smaller than
the full model’s R full 2 = 0.56 . In general, the IS R2 always increases with more covariates. This
in-sample R2 is exactly what the maximum likelihood estimate (MLE), β ̂ , is fit to maximize. If
you give glm more knobs to turn (more βk’s), then it will be able to get you a tighter fit. This is
exactly why we don’t really care about IS R2—it can be made to look arbitrarily good just by
adding more variables to the design. The real question is, how well does each model predict
new data?

Out-of-Sample Experiments
Of course, you can’t know about performance on unseen data because you don’t have
it. However, you can mimic the experience of predicting on unseen data by performing an
 out-of-sample experiment to evaluate your models on data that was not used for training. You
do this by breaking your data into several folds and then repeatedly training your model on all
data except one fold and recording the deviance on the left-out fold.

We perform this OOS experiment for both the full and cut regression models. First, we ran-
domly sample a fold ID for each observation in the semiconductor data set (we set a seed here
so you can repeat the same experiment).

> n <- nrow(SC) # the number of observations

> K <- 10 # the number of ‘folds’

> # create a vector of fold memberships (random order)

> set.seed(1)

> foldid <- rep(1:K,each=ceiling(n/K))[sample(1:n)]

> foldid[1:20]

 [1] 7 5 1 7 4 3 2 9 9 5 9 3 1 8 5 6 4 6 3 7

> fulldev <- cutdev <- nulldev <- rep(NA,K)

> for(k in 1:K){

+ train <- which(foldid!=k) # train on all but fold ‘k’

+

+ ## fit the two regressions

+ cuts <- c(“fail”,names(signif))

+ rfull <- glm(fail~., data=SC, subset=train,

+ family=“binomial”)

+ rcut <- glm(fail~., data=SC[,cuts], subset=train,

+ family=“binomial”)

+

+ ## predict (type=response for probabilities)

We set K = 10 folds, and now foldid contains the allocated random fold for each observation.
The OOS experiment is then run using a for-loop.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 106 01/13/22 07:31 AMtad71671_ch03_100-150.indd 106 01/13/22 07:31 AM

106 Chapter 3 Regularization and Selection

There is a lot going on here, but if you go through each step you’ll find that we are simply
(a) fitting each regression on the subset that excludes fold k via the subset argument, and
(b) predicting and calculating deviances for observations in fold k.

Looking at the resulting OOS deviances, you will see that the cut model has much lower
(better) deviance than the full model.

+ pfull <- predict(rfull, newdata=SC[-train,],

+ type=“response”)

+ pcut <- predict(rcut, newdata=SC[-train,],

+ type=“response”)

+

+ ## calculate OOS deviances

+ y <- SC$fail[-train]

+ ybar <- mean(y)

+ fulldev[k] <- -2*sum(y*log(pfull)+(1-y)*log(1-pfull))

+ cutdev[k] <- -2*sum(y*log(pcut)+(1-y)*log(1-pcut))

+ nulldev[k] <- -2*sum(y*log(ybar)+(1-y)*log(1-ybar))

+

+ ## print progress

+ cat(k, “ ”)

+ }

1 2 3 4 5 6 7 8 9 10

> round(fulldev)

 [1] 1838 306 284 198 455 221 263 301 822 158

> round(cutdev)

 [1] 98 50 40 81 68 59 67 57 87 53

> R2 <- data.frame(

+ full = 1 - fulldev/nulldev,

+ cut = 1 - cutdev/nulldev)

> colMeans(R2)

 full cut

-5.24145031 0.08020355

The resulting R2 values are especially striking: the full model has a negative R2, indicating that
its predictions are further from new observations than you get using the training sample mean
as your predictor. In this case, the average OOS R2 are −5.2 for the full model (or −520%) and
a positive 0.08 for the cut model. So, while the cut-model’s OOS R2 is lower than its IS R2, it
still manages to do 8% better than the null.

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 107

tad71671_ch03_100-150.indd 107 01/13/22 07:31 AMtad71671_ch03_100-150.indd 107 01/13/22 07:31 AM

Figure 3.3 shows the distribution of R2 values across the folds: the full model has a nega-
tive R2 for every fold of the OOS experiment. How can this happen? Look at the R2 formula:
1 − dev(β ̂) / dev(β = 0) . The R2 will be negative if your fitted model performs worse than the
null model, that is, if your y ̂ estimates are further from the truth than the overall average, y ¯ .
Since y ¯ ≈ 1 / 15 here, you are better off simply auditing every 15th chip instead of using a qual-
ity control process based upon the overfit full model.

You may have never seen a negative R2 before. If so, it is likely because you have been
looking only at in-sample performance. Out-of-sample, negative R2 are unfortunately more
common than you might expect. Example 3.1 is a dramatic demonstration of the basic princi-
ple: all that matters is out-of-sample R2. You don’t care about in-sample R2, because you can
get better numbers simply by adding junk variables and inducing overfit.

FIGURE 3.3 OOS R2 for both full (200 signal) and cut (25 signal) semiconductor regressions.

full

R
2

–1
5

–1
0

–5
0

cut
Model

3.1.1 Cross-Validation
The routine we introduced in Example 3.1—using OOS experiments to select the best model—
is called cross-validation. The generic procedure is outlined in Algorithm 3.1. Note that we are
folding the data into nonoverlapping subsets. Folding your data in this way guarantees that each
observation is left out once for validation—each data point is given a chance to yield a large
error in a prediction exercise. Doing this, rather than sampling overlapping subsets, reduces the
variance of CV model selection.

Cross-validation will play a big role in this text, since using OOS performance in selection
of “the best” model is at the core of practical data science. Note that, in the way we ran the OOS
experiment in Example 3.1, we were actually violating one of the key rules of running a CV
experiment. In our analysis, the full sample was used to choose the 25 variables that are in the
cut model. A true OOS experiment would have done FDR control inside the for loop, such that
the OOS results are a validation of the end-to-end selection procedure. Anything you do to the
data, do it without the left-out fold if you want an accurate assessment of OOS performance.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 108 01/13/22 07:31 AMtad71671_ch03_100-150.indd 108 01/13/22 07:31 AM

108 Chapter 3 Regularization and Selection

As another general point, you want the CV scheme to mirror how you will actually be applying
the model in practice. For example, if you are going to be predicting time series data, then you
might want to use only past training data to predict future left-out folds (e.g., you might build
a CV routine to predict each month after training on a set number of previous months of data).

Algorithm 3.1 K-fold Cross-Validation

Given a dataset of n observations, { [x i , y i] } i=1 n , and M candidate models (or algorithms),
• Split the data into K roughly evenly sized nonoverlapping random subsets (folds).
• For k = 1 . . . K:

Fit the parameters β ̂
m

 for each candidate model/algorithm using all but the kth fold
of data.
Record deviance (or, equivalently R2) on the left-out kth fold based on predictions
from each model.

This will yield a set of K OOS deviances for each of your candidate models. This sample
is an estimate of the distribution of each model’s predictive performance on new data,
and you can select the model with the best OOS performance.

3.2 Building Candidate Models
We will revisit cross-validation and other model selection tools in Section 3.3. However, before
we get there, we need to develop algorithms for constructing good sets of candidate models.
The bulk of modern statistical analysis proceeds in two steps. First, you build a set of plausible
candidate models. Second, you use a tool like cross-validation to choose among these candi-
dates. This chapter is split into these two steps: building a set of candidate models, and then
later selecting amongst the candidates. In this section we will introduce the twin ideas of reg-
ularization and model paths as the tools for constructing candidate sets of regression models.

Stepwise Selection
How do you build sets of candidate models? With any reasonable input dimension, it is impos-
sible to simply catalog all possible models. For example, if you have a regression setting with
J potential covariates, there are 2J different possible models depending upon whether each
covariate is included. With just 20 covariates, this implies already more than 1 million candi-
date models. In the previous section we used p-values on the most complex model as the basis
for selecting a simpler model. However, this is generally a bad idea for a couple of reasons:

 • When you have multicollinearity—correlation between inputs—the p-values for all of
these variables will be large (they will look insignificant) even if any one of the variables
provides a useful signal on the response. You will end up including none because you don’t
know which one of them should be included.

 • The p-values are based on a likely overfit model, and this leads to an unstable foundation
for model construction. You are choosing candidate models on the basis of a noisy regres-
sion fit, and small changes in the data can lead to big changes in the candidate models this
implies. More dramatically, when you have more covariates than observations there is no
full model because glm will fail to converge (it will give you an error or a warning and
default some coefficient estimates to zero).

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 109

tad71671_ch03_100-150.indd 109 01/13/22 07:31 AMtad71671_ch03_100-150.indd 109 01/13/22 07:31 AM

This general approach—estimating the most complex model and then using metrics like “sig-
nificance” to cut it down to size—is sometimes called backward stepwise regression. It should
be avoided.

A better solution is to proceed in the opposite direction, building from simplicity to com-
plexity in a forward stepwise regression. The procedure is simple: you start by estimating
all single input models (one for each dimension of x) and select the one that has the lowest
in-sample deviance. You then estimate all two input models that include this first best covariate
(the one that was best among all single input models), and then select the best two input model.
This process repeats until you get to some maximum model dimension that you are willing
to consider.

Example 3.2 Semiconductor Manufacturing: Forward Stepwise Regression The step
function can be used to execute this stepwise routine. You give a starting point, called the null
model, and a biggest possible model, called the scope. We can use forward stepwise regression
on the semiconductor manufacturing data from Example 3.1. The null model is the model with
only the intercept, denoted by 1 in the glm formulation. The code below takes a few minutes to
run (notice we are timing it with the system.time function).

> null <- glm(fail~1, data=SC)

> system.time(

+ fwd <- step(null, scope=formula(full), dir=“forward”))

...

Step: AIC=92.59

FAIL ~ SIG2

...

 user system elapsed

 82.55 16.75 128.93

> length(coef(fwd))

[1] 69

This procedure enumerated 69 models, ranging from a univariate model including only SIG2
up to a model with 68 input signals (plus the intercept). The algorithm stopped at 68 because
the AIC (Akaike Information Criterion) score for that model was lower (better) than any of
the AIC scores for models with 69 inputs. AIC is a “model selection criteria” that attempts to
predict how well the model will perform in OOS prediction (without actually running an OOS
experiment). We will detail AIC and other information criteria in Section 3.3.1. The step
function stopped when it thought it had found the best model, making the assumption that since
the aic is not getting any better when moving from 67 to 68 inputs it will not improve with
70+ inputs. From this perspective, step has determined that the 68 input regression is “best”
overall and this is the model that you should use for prediction.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 110 01/13/22 07:31 AMtad71671_ch03_100-150.indd 110 01/13/22 07:31 AM

110 Chapter 3 Regularization and Selection

Problems with Subset Selection
In general, forward stepwise regression has a lot of flaws. It can be improved upon dramatically
using the regularization ideas that we will introduce in this section. But the general approach
of proceeding forward in your search, from simplicity to complexity, is a common and useful
approach to building sets—or paths—of candidate models. This is an example of a greedy
search strategy. In a greedy search you proceed myopically, at each point adding the next iter-
ation of complexity that seems most useful given the current search state. Despite not optimiz-
ing for global properties of the search path (i.e., each decision does not consider implications
for future decisions), greedy algorithms are a useful way to reduce the complexity of your
model search and they play a prominent role in many ML strategies.

The problems with forward stepwise selection are that it is slow (step took approximately
129 elapsed seconds) and unstable. These are going to be issues for any model selection procedure
that is based on subset selection: choosing sets of inputs, and then using maximum likelihood
estimation to fit a regression to each set of inputs. The slowness is because you need to estimate
from scratch every model (every subset of inputs) that you want to consider, and because there
will be a massive set of possible input subsets to consider (this is true even if you use a greedy
search to reduce the number of candidate models). If you run the step function you will see the
massive number of glm models that it fits during its greedy search. This is a waste of time.

The alternative to subset selection (and to slow tools like step) is to introduce the idea of
regularization: replacing deviance minimization with penalized deviance minimization, where
you are incorporating a “cost of complexity” in your model estimation. Then, instead of select-
ing subsets of inputs, you select the “price of complexity” as a tuning parameter. We will see
that this yields fast construction of useful sets of candidate models.

3.2.1 Penalized Deviance Estimation
The key to modern statistics is regularization: penalizing complexity so as to depart from opti-
mality and stabilize your set of candidate models. Incorporating the cost of complexity in your
estimations, and considering different prices on complexity in this cost function, allow you to
enumerate a list of promising candidate models that range from simple to complex.

Recall from Section 1.4 in the regression chapter that, in classical maximum likelihood
estimation, you are fitting β ̂ to minimize the in-sample deviance (which is just −2 times
the likelihood). You are choosing the MLE β ̂ to minimize dev(β), for example, to minimize
Σ i (y i − x i ′ β) 2 in linear regression (i.e., in OLS estimation). When you use glm to fit a regres-
sion model you are minimizing the deviance. A regularization strategy will instead involve
minimizing penalized deviance. You are fitting β ̂ to minimize

 1 _ n dev(β) + λ ∑
j
 c(β j) (3.3)

where λ is your penalty and c(βj) is the cost function. The cost function determines how differ-
ent magnitudes of βj translate to a cost on complexity. For example, we will be largely working
with the absolute value cost function, c(β) = |β|, which is the basis for the common and useful
Lasso estimation framework.

Notice that we are dividing the deviance by n, the sample size, so that (3.3) is technically
the penalized average deviance. We do this so that λ is on the scale of the average deviance and
doesn’t need to increase with n to yield similar results. To help with your intuition, consider

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 111

tad71671_ch03_100-150.indd 111 01/13/22 07:31 AMtad71671_ch03_100-150.indd 111 01/13/22 07:31 AM

the setting of linear regression where the deviance is the sum of squared errors. Equation (3.3)
then becomes

 1 _ n MSE(β) + λ ∑
j
 c(β j) =

 ∑ i=1 n (y i − x i ′ β) 2
 _____________ n + λ ∑

j
 c(β j) (3.4)

This implies that the complexity penalty is on the same scale as your mean squared error,
which should be roughly similar to the variance in additive errors (σ2).

Putting a Cost on Complexity
Equation (3.3) adds a penalty—the λ Σ j c(β j) term—to the deviance function that we were min-
imizing in our regression chapter. This penalty puts a cost on the magnitude of each βj. That
penalizes complexity, because the βj coefficients are what allow your predicted y ̂ values to
move around with different input x values. If you force all the β ̂ j to be close to zero, then your y ̂
values will be shrunk toward y ¯ and when you jitter the data your predictions will not change as
much as they would if you did not include a penalty term during estimation.

Another way to think about Equation 3.3 is through the lens of decision theory—a frame-
work built around the idea that choices have costs. If you consider the decision-making process
in classical statistics—focused on a two-stage process of estimation and hypothesis testing—
what are the costs?

 • Estimation cost: Deviance, i.e. the cost of distance between data and the model, and it is
what you minimize to obtain the MLE.

 • Testing cost: There is a fixed price placed on β ̂ j ≠ 0 . This is implicit in the hypothesis testing
procedure, where you set β ̂ j = 0 unless you have significant evidence otherwise. The null is
safe and you need to “pay” to decide otherwise.

Thus, in classical statistics, the cost of β ̂ is deviance plus a penalty for being away from zero.
However, the cost of moving away from zero is hidden away inside the hypothesis testing pro-
cedure. Equation 3.3 makes both costs explicit.

Cost Functions
What should the penalty function look like? First, λ > 0 is the penalty weight that determines the
“price” of complexity. It is a tuning parameter that needs to be selected in some data-dependent
matter, and the later parts of this chapter are focused on how to do this. For now we will take
λ as given. The rest of the penalty is determined by the shape of the cost function. In all cases,
c(β) will be lowest at β = 0, and you pay more for |β| > 0; that is, the penalization shrinks the
coefficients toward zero. Otherwise, the variety of options is wide; Figure 3.4 shows a few.

FIGURE 3.4 Common penalty functions: ridge β2, Lasso |β|, elastic net αβ2 + |β|, and a “nonconvex” penalty log(1 + |β|).

–20 0 20

0
20

0
40

0

Ridge

Beta

Be
ta

^2

0–20 20

0
5

15

Lasso

Beta

A
bs

(B
et

a)

0–20 20

0
20

40
60

Beta

Elastic net

A
bs

(b
et

a)
 +

 0
.1

 *
 B

et
a^

2

–20 0 20

0.
5

1.5
2.

5

log

Beta

lo
g(

1
+

 a
bs

(B
et

a)
)

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 112 01/13/22 07:31 AMtad71671_ch03_100-150.indd 112 01/13/22 07:31 AM

112 Chapter 3 Regularization and Selection

Each of these leads to different estimation results. The ridge penalty, β2, places little penalty
on small values of β but a rapidly increasing penalty on large values. This will be appropriate
for scenarios where you believe each covariate has a small effect, with no big coefficients dom-
inating the model. The Lasso’s absolute value penalty, |β|, places a constant penalty on incre-
mental deviations from zero. Moving β from 1 to 2 costs the same as a move from 101 to 102.
And the “elastic net” is an elaborate name for the combination of ridge and Lasso penalties.

Penalties like the log penalty on the far right are special because they have diminishing
bias: they place extreme cost on the move from zero to small values of β, but for large values
the rate of penalty change is small. These penalties encourage lots of zeros in your fit while
allowing large signals to be estimated without any bias (i.e., without shrinking large β ̂ j toward
zero). Such “nonconvex” penalties are sometimes favored by theoretical statisticians, but they
need to be treated with care in practice because they introduce many of the instability and
computational issues that you observe with subset selection. Indeed, you can interpret forward
stepwise regression as solving for a penalized deviance under the extreme version of this where
c(β) = 𝟙 [β≠0] such that c(0) = 0 and c(β) = 1 for any β ≠ 0. The problems of subset selection—
needing to refit a completely different model every time you add a variable—are extreme ver-
sions of the problems associated with any nonconvex penalty scheme.

An advantage of the Lasso is that it gives the least possible amount of bias on large signals
while still retaining the stability of a convex penalty like the ridge (convex means that the pen-
alty doesn’t flatten out for large values). Another massive advantage of the Lasso, and of all the
three right “spiky” penalties in Equation 3.4, is that it will yield automatic variable screening.
That is, some of the solved β ̂ j values will be exactly equal to zero—not close to zero, but zero
as in “they are not in the model, so you don’t need to store or think about them.” The reason
that this happens is illustrated in Figure 3.5: the deviance is smooth while the absolute value
function is pointy, and the minimum of their sum can be at zero if the penalty dominates. Any
penalty that involves a |β| term will do this—for example, all but ridge in Figure 3.4.

In summary, there are many penalty options. As you will see, the Lasso is a common
default. You can think of it as a baseline and consider others only if you have a strong reason
to do so. There are certain settings where in theory you might prefer the elastic net (if the true
regression relationship has many small coefficients) or a nonconvex log penalty (e.g., when
model compression—having the fewest coefficients as possible—is the goal) but it is rare in
practice that you can do much better than the Lasso.

FIGURE 3.5 Illustration of penalized deviance minimization leading to β ̂ = 0 .

0.0–1.0 1.0 2.0

0
1

2
3

4
D

ev
ia

nc
e

β̂

0.0–1.0 1.0 2.0

0.
0

0.
5

1.0
1.5

2.
0

Pe
na

lty

β̂

0.0–1.0 1.0 2.0

1
2

3
4

5
6

D
ev

ia
nc

e
+

 p
en

al
ty

β̂

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 113

tad71671_ch03_100-150.indd 113 01/13/22 07:31 AMtad71671_ch03_100-150.indd 113 01/13/22 07:31 AM

3.2.2 Regularization Paths
The Lasso alone does not select models. Rather, it provides a mechanism to enumerate a set of
candidate models to choose among. A Lasso regularization path minimizes, for a sequence of
penalties λ1 > λ2 ... > λT, the penalized deviance

 1 _ n dev(β) + λ t ∑
j
 ∣ β j ∣ (3.5)

This yields a sequence of estimated regressions with coefficients β ̂ 1 … β ̂ T . Given this
sequence, model selection tools (e.g., cross-validation) are used to choose the best λ ̂ t and hence
the best β ̂ t .

Algorithm 3.2 outlines this recipe. You start with λ1 just big enough that β ̂ 1 = 0 . This is
always possible: from Equation 3.5, you can set λ so that the cost of moving any β ̂ j slightly
away from zero is equal to the corresponding decrease in the deviance, and so the optimization
keeps β ̂ j = 0 . Most software will find this starting point automatically. You then iteratively
shrink λ while updating the estimated β ̂ .

A crucial detail here is that the coefficient updates are smooth in λ; that is,

 β ̂ t ≈ β ̂ t−1 for λ t ≈ λ t−1 . (3.6)

This leads to both speed and stability for the Lasso algorithm. The speed comes from the fact
that each update β ̂ t−1 → β ̂ t is small and hence fast. Selection stability is the mirror image of this
property: even if the “best” λ changes across data samples, it will remain in a local neighbor-
hood and the selected β ̂ will thus also stay in a small neighborhood.

Algorithm 3.2 Lasso Regularization Path

Begin with λ 1 = min { λ : β ̂ λ = 0 } .
For t = 1 . . . T:

• Set λt = δλt−1 for δ ∈ (0, 1) .
• Then find β ̂ t to optimize Equation 3.5 under penalty λt.

Path Plots
The whole enterprise is easiest to understand visually. The path plot in Figure 3.6 illustrates
Algorithm 3.2. The algorithm moves right to left with decreasing values of λ. The vertical axis
here is β ̂ , with each colored line a different β ̂ j as a function of λt. Each vertical slice of the plot
represents a candidate model. From right to left, the models become increasingly complex as
the β ̂ t include more and larger nonzero β ̂ j values (the plot header marks the number of nonzero
 β ̂ j at certain segments).

This picture and the underlying path estimation were executed using the gamlr package
for R (Taddy, 2017). We will use this package heavily. It provides fast and reliable Lasso paths.
The popular glmnet package (Friedman et al., 2010) is also an excellent option for Lasso
estimation. Both gamlr and glmnet use similar syntax and use similar optimization routines
(coordinate descent). The difference is in what they can do beyond the Lasso: gamlr offers
diminishing bias penalization, like the log penalty in Figure 3.4, while glmnet provides for the
elastic net of that same figure. We use the gamlr software because it was written to provide for

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 114 01/13/22 07:31 AMtad71671_ch03_100-150.indd 114 01/13/22 07:31 AM

114 Chapter 3 Regularization and Selection

useful features covered in this book (e.g., AICc selection, double ML for causal inference, and
distributed multinomial regression).

Running a Lasso in gamlr is fairly straightforward, but there are some particularities, which we’ll
outline in the next section. The main difference from glm is that that you need to create the numeric
model matrix yourself. There are some tricks to creating model matrices for Lasso regressions, and
we will spend some time outlining those details before starting to fit our Lasso paths.

3.2.3 Sparse Model Matrices
To use gamlr you need to feed it the data in the correct format. Recall from Chapter 1 that
converting a data frame to a numeric model matrix is one of the first steps done inside glm. The
numeric model matrix contains a column for each continuous (numeric) variable and columns
for levels of the categorical (factor) variables. In creating the model matrix, R will create a
column for all but one level of a categorical variable. The level that is omitted is the reference
level. When you fit glm, the coefficients for the other factor levels can each be interpreted as a
comparison to the baseline expected response for this reference level.

In Chapter 1, we worked with data on orange juice sales. The oj data frame contains a contin-
uous covariate price and a factor variable brand with three levels: dominicks, minute.maid,
and tropicana. To create the model matrix that is used by glm for regression estimation, you
pass a regression formula and the data to model.matrix the same way as you would to glm but
without including the response variable. We do that here and print a row for each brand.

FIGURE 3.6 A Lasso regularization path plot from gamlr. Algorithm 3.2 proceeds from right to left,
with decreasing λt.

873

1.0
0.

0

C
oe

ffi
ci

en
t

–1
.5

–6 –5 –4

↖
 # non zero

β = 0@ λ
↗

–3 –2

β̂

^

603 226 40 1

log lambda
λ

> oj<-read.csv(“oj.csv”,strings=T)
> modMat<-model.matrix(~log(price)+brand,data=oj)

> modMat[c(100,200,300),] #look at one row for each brand

 (Intercept) log(price) brandminute.maid brandtropicana

100 1 1.1600209 0 1

200 1 1.0260416 1 0

300 1 0.3293037 0 0

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 115

tad71671_ch03_100-150.indd 115 01/13/22 07:31 AMtad71671_ch03_100-150.indd 115 01/13/22 07:31 AM

Notice the column of 1s for the intercept, the single column for the quantitative predictor, and a
binary column for each of minute.maid and tropicana. The reference level for factor brand
is dominicks and this reference level is subsumed into the intercept. Notice that the third
printed row has zero for both the categorical columns: this observation is from dominicks, so
it gets a zero for each of brandminute.maid and brandtropicana columns.

This is not the model matrix that you want to use with gamlr (or glmnet) for Lasso regres-
sion. You will want to make three changes:

 1. Create a column for all factor levels (including dominicks).
 2. Delete the column of 1s for the intercept (gamlr adds its own intercept).
 3. Convert to a sparse matrix to reduce storage and increase efficiency.

We will work through these changes in turn.

Including All Factor Levels in the Model Matrix
For MLE regression with glm, it doesn’t matter which brand of OJ is the baseline level for the
brand factor. Even though one of them will get subsumed into the intercept, you end up with the
same predicted y ̂ values. But when you start penalizing coefficients, factor reference levels now
matter. Since the penalty rewards β ̂ j values closer to (or at) zero, you are shrinking factor coef-
ficients toward the intercept—toward the reference level. And it makes a difference which level
is the baseline (i.e., whether you shrink Minute Maid toward Tropicana instead of Dominicks).

The solution is to simply get rid of the reference level. Once you add a penalty to the deviance,
there is no reason to have only K − 1 coefficients for a K-level factor. If every category level is
given its own dummy variable, then every factor level effect is shrunk toward a shared intercept.
You are shrinking toward a shared mean, with only significantly distinct effects getting nonzero β ̂ k .

You can force R to create separate dummies for each level by creating an extra factor level.
The gamlr package includes the utility function naref which makes NA (“not available,” R’s
code for “missing”) the reference level for every factor. Conveniently, naref has the extra
advantage of providing a framework for missing data; we will introduce this functionality later
in this chapter. Here we apply naref to create the new data frame ojdf.

> library(gamlr)

> ojdf <-naref(oj)

> ojdf[c(100,200,300),“brand”]

[1] tropicana minute.maid dominicks

Levels: <NA> dominicks minute.maid tropicana

If you apply naref to your data frame before creating the model matrix, then it will lead to
every factor level having its own column.

> modMatAllLevs<-model.matrix(~log(price)+brand,data=ojdf)[,-1]

> modMatAllLevs[c(100,200,300),]

 log(price) branddominicks brandminute.maid brandtropicana

100 1.1600209 0 0 1

200 1.0260416 0 1 0

300 0.3293037 1 0 0

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 116 01/13/22 07:31 AMtad71671_ch03_100-150.indd 116 01/13/22 07:31 AM

116 Chapter 3 Regularization and Selection

Notice that we appended [,-1] when we created the model matrix here. This removed the
intercept column, as desired because gamlr adds its own intercept. You can also add a -1 term
in the regression formula to get the same result.

Sparse Matrices
The model matrix we just created is in dense format: R stores the matrix as a rectangle of data.
You can provide dense matrices to gamlr, however gamlr (along with glmnet and many other
R packages) is able to take advantage of the Matrix library representation for sparse matrices.
A sparse matrix is one with many zero entries, which is a common scenario in modern data
analysis. For example, many interacting categorical variables will—when represented as 0/1
indicator variables—lead to sparse designs. It is then efficient to ignore zero elements in the
matrix whenever you can. Packages like gamlr use sparse matrix structures for lower storage
costs and faster computation. This will be essential for big data.

One common sparse representation is a simple triplet matrix (STM) with three key ele-
ments: the row i, column j, and entry value x. Everything else in the matrix is assumed zero.
Here’s an example:

[

− 4

0
 0 10

5

0

]

 is stored as
{

i

=

1,3, 2

 j = 1,1, 2
x

=

− 4,5,10

}

The Matrix library provides tools for creating and working with sparse matrices. After loading
this library we can use sparse.model.matrix to create the same model matrix as before, but
in efficient simple triplet format.

> xOJ<-sparse.model.matrix(~log(price)+brand,data=ojdf)[,-1]

> xOJ[c(100,200,300),]

3 x 4 sparse Matrix of class “dgCMatrix”

 log(price) branddominicks brandminute.maid brandtropicana

100 1.1600209 . . 1

200 1.0260416 . 1 .

300 0.3293037 1 . .

The zeros have been replaced by “.” when we print the matrix. This is a hint that this is a
sparse matrix. Under the hood, the Matrix library has created a special sparse matrix structure.

> class(xOJ)

[1] “dgCMatrix”

attr(,“package”)

[1] “Matrix”

This specific matrix is of the dgCMatrix (compressed, sparse, column-oriented) format. The
Matrix library has a variety of different structures that it uses for representing sparse matrices,
and packages that are compatible with Matrix, like gamlr, are able to recognize and process
all the different formats. You can ignore the details and just benefit from lower memory usage

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 117

tad71671_ch03_100-150.indd 117 01/13/22 07:31 AMtad71671_ch03_100-150.indd 117 01/13/22 07:31 AM

and faster optimizations. However, you will often need to remove the sparse matrix formatting
and convert back to a dense representation. This happens, for example, if you are trying to use
the output gamlr in another function that doesn’t recognize sparse matrices. One way to do this
is to apply the as.matrix function.

> as.matrix(xOJ[c(100,200,300),])

 log(price) branddominicks brandminute.maid brandtropicana

100 1.1600209 0 0 1

200 1.0260416 0 1 0

300 0.3293037 1 0 0

> xOJ[100,]

 log(price) branddominicks brandminute.maid brandtropicana

 1.160021 0.000000 0.000000 1.000000

Alternatively, if you just want to pull a single vector out from the matrix (row or column) it will
automatically be converted back to dense format.

3.2.4 Path Estimation with gamlr
Once you know how to build your sparse model matrix, running gamlr is easy. You simply
supply the model matrix as x and the response as y and off you go. For example, we can regress
log sales onto xoj.

> fitOJ <- gamlr(x=xOJ, y=log(ojdf$sales))

> plot(fitOJ)

Calling plot on the fitted gamlr object produces the path plot in Figure 3.7a. You can also add
family=“binomial” to fit a Lasso logistic regression, as we do here for the semiconductor
data (note that the first column of SC is fail, the response).

> fitSC <- gamlr(x=SC[,-1], y=SC[,1], family=“binomial”)

> plot(fitSC)

The resulting path plot is shown in Figure 3.7b. We didn’t bother to create a sparse model matrix
for the semiconductor Lasso because the original data is all numeric and dense (it doesn’t con-
tain a bunch of zeros). In that case you can just give gamlr the raw data as x.

The default behavior of gamlr solves for a sequence of 100 penalties λt, ranging from the
initial λ1 (set just big enough so that β ̂ 1 = 0) down to λT = 0.01λ1. You can change this default
behavior by specifying nlambda to set the sequence length T, or lmr to set the minimum λT

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 118 01/13/22 07:31 AMtad71671_ch03_100-150.indd 118 01/13/22 07:31 AM

118 Chapter 3 Regularization and Selection

penalty size via the ratio lmr = λT/λ1. This lmr argument is one you will use often; it is com-
mon that you will want to fit more complex models than you get for the default lmr=0.01 and
then you need to set a smaller lmr.

Example 3.3 Orange Juice Sales: Lasso Paths You can print the fitted gamlr object to get
a quick statement on what we fit above.

FIGURE 3.7 Lasso path plots for the orange juice (a) and semiconductor manufacturing (b) regression
examples.

(a)
log lambda

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

(b)

–5

–3

–2
–1

0
1

2
3

–2
–1

0
4 4 4 4 1 192 173 127 48 1

–4 –3 –2 –1
log lambda

–8 –7 –6 –5 –4

> fitOJ

gaussian gamlr with 4 inputs and 100 segments.

And you can call summary on it to get information about each path segment (the estimation at
each λt).

> summary(fitOJ)

gaussian gamlr with 4 inputs and 100 segments.

 lambda par df r2 aicc

seg1 0.465057217 1 1 0.00000000 1112.15134

seg2 0.443919649 2 2 0.01849065 573.89239

...

seg99 0.004872013 4 4 0.39390922 -13376.34842

seg100 0.004650572 4 4 0.39392573 -13377.13705

The information here includes the number of nonzero parameters (par) and degrees of freedom
(df, which will be the same as par for the Lasso) and two measures of fit: in-sample R2 and a
corrected version of the AIC (we will work with this in the next section).

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 119

tad71671_ch03_100-150.indd 119 01/13/22 07:31 AMtad71671_ch03_100-150.indd 119 01/13/22 07:31 AM

The gamlr object contains a number of attributes.

> names(fitOJ)

 [1] “lambda” “gamma” “nobs” “family” “alpha” “beta”

 [7] “df” “deviance” “iter” “free” “call”

 > dim(fitOJ$beta)

[1] 4 100

For example, lambda is the sequence of fitted λt penalties, alpha is the sequence of fitted inter-
cept terms, and beta is the sequence of fitted regression coefficients. The intercept sequence is
a vector of length nlambda (100 by default) and the coefficient sequence beta is an nlambda-
column matrix with number of rows equal to the number of input variables (the number of col-
umns in your model matrix). Each column of beta contains a segment of the path of estimated
regression coefficients. Here we show the first two and last two segments.

> fitOJ$beta[,c(1:2,99:100)]

4 x 4 sparse Matrix of class “dgCMatrix”

 seg1 seg2 seg99 seg100

log(price) . -0.07278185 -3.0761907 -3.0790315

branddominicks . . -0.8468649 -0.8479243

brandminute.maid

brandtropicana . . 0.6376020 0.6386095

At λ1 all of the coefficients are set equal to zero. As the penalty decreases to λ2, the coefficient
on log price enters the model with a nonzero elasticity. At the end of the path, at λ100, all of the
coefficients are nonzero except for the brandminute.maid coefficient. Sensibly, gamlr has
determined that Minute Maid is the baseline OJ and that the economy Dominick’s and luxury
Tropicana can be represented through deviations from this baseline. Note that the intercept is
always unpenalized in gamlr, so you have a nonzero intercept at every path segment.

> fitOJ$alpha[c(1:2,99:100)]

 seg1 seg2 seg99 seg100

 9.167864 9.224931 11.649609 11.651854

At the end of the Lasso path, the penalty is very small and our model fit is approaching that
which you would get by using OLS to estimate this regression model. We can compare to the
OLS results after re-leveling brand to have minute.maid as the reference level.

> oj$brand <- relevel(ojdf$brand, “minute.maid”)

> glm(log(sales) ~ log(price) + brand, data=oj)

Coefficients:

 (Intercept) log(price) branddominicks brandtropicana

 11.6990 -3.1387 -0.8702 0.6598

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 120 01/13/22 07:31 AMtad71671_ch03_100-150.indd 120 01/13/22 07:31 AM

120 Chapter 3 Regularization and Selection

Another gamlr argument that we will encounter frequently is the free argument. You can
pass free column indices (or names) for your design matrix and gamlr will leave the corre-
sponding coefficients unpenalized in the regression fit. This is useful if there are some vari-
ables that you know need to be in the regression model, and you want their coefficients to be
estimated without any bias (without any shrinkage toward zero). For example, we could have
log price enter without a coefficient penalty in our simple OJ regression.

> fitOJfree <- gamlr(x=xOJ, y=log(ojdf$sales),free=“log(price)”)

> fitOJfree$beta[,c(1:2,99:100)]

4 x 4 sparse Matrix of class “dgCMatrix”

 seg1 seg2 seg99 seg100

log(price) -1.601307 -1.64724906 -3.1199089 -3.1207643

branddominicks . -0.04531381 -0.8612653 -0.8616711

brandminute.maid

brandtropicana . . 0.6508045 0.6512121

We now have a nonzero coefficient on log(price) even at λ1. Of course, even though it is
unpenalized, the coefficient on log price changes along the path as it adjusts to the influence of
the estimated brand effects.

You may be confused at this point about what to do with this path of estimates. What use is
a set of 100 model estimates if you don’t know which one to use? Indeed, this path estimation is
just the first step in model construction: once you have a path, you will need to use the selection
tools of Section 3.3 to determine which model to deploy in practice.

Scaling the Penalty by Standard Deviations
A key thing to be aware of is that for Lasso regression the size of the covariates matters. Since
the βk values are all penalized by the same λ, you need to make sure they are on comparable
scales. For example, xβ has the same effect as (2x)β/2, but |β| is twice as much penalty cost as
|β/2|. The common solution to this is to multiply βj by sd(xj) in the cost function to standardize
across scales. That is, instead of Equation 3.5, you minimize

 1 _ n dev(β) + λ ∑
j
 sd(x j) ∣ β j ∣. (3.7)

This implies that each βj’s penalty is now measured on the scale of 1 standard deviation change
in xj and, for example, switching from meters to feet or Fahrenheit to Celsius won’t change your
model fit.

This standardization scaling is the default in gamlr (and in glmnet) via the argument
standardize=TRUE. There are some occasions where you instead want standardize=FALSE.
Most commonly, you might want standardize=FALSE if you have all indicator variables indi-
cating category membership (such as brand or geographic region). In this case, the standard-
ization would put more penalty on common categories (since sd(xj) will be higher) and less
penalty on rare categories, which might be undesirable. However, unless you have clear reason
to do otherwise, you should stick with the default standardize=TRUE.

In the remainder of this section, we will introduce two regression examples—one linear
and one logistic—and work through them to illustrate gamlr Lasso regression.

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 121

tad71671_ch03_100-150.indd 121 01/13/22 07:31 AMtad71671_ch03_100-150.indd 121 01/13/22 07:31 AM

Example 3.4 Ames Housing Data: Lasso Linear Regression The data in amesHousing.
csv consist of information that the local government in Ames, Iowa, uses to assess home
values. These data were compiled from 2006 to 2010 by De Cock (2011). They contain 2930
observations on 79 variables describing properties in Ames and their observed sale price.

> ames <- read.csv(“AmesHousing.csv”, strings=T)

> dim(ames)

[1] 2930 79

> ames[1:3,c(1:5,79)]

 MS.Zoning Lot.Frontage Lot.Area Street Alley SalePrice

1 RL 141 31770 Pave <NA> 215000

2 RH 80 11622 Pave <NA> 105000

3 RL 81 14267 Pave <NA> 172000

Our prediction target here will be the log of SalePrice. We are working on log scale because,
following the discussions in Chapter 1, prices tend to change with product characteristics in a
multiplicative fashion. The sale price distribution is shown in Figure 3.8, both as a histogram
and in a log-log scatterplot against lot size.

We will do some light processing on the raw data.

FIGURE 3.8 Home sale prices in Ames, Iowa. Panel (a) shows the marginal distribution of sale prices and
(b) shows prices against the property lot size in square feet (note that this plot uses log scaling on the axes).

(a)

0e+00

0e
+

00 2e
+

04
1e

+
05

5e
+

05

2e
–0

6
4e

–0
6

6e
–0

6

2e+05 4e+05
Home sale price Lot area (SF)

D
en

sit
y

H
om

e
sa

le
 p

ri
ce

6e+05 8e+05 2e+03 1e+04 5e+04 2e+05

(b)

> ames$Yr.Sold <- factor(ames$Yr.Sold)

> ames$Mo.Sold <- factor(ames$Mo.Sold)

> ames$Lot.Area <- log(ames$Lot.Area)

Here we have converted the lot area to log scale, and converted the year and month of sale
to factors. This is a rich data set and there is a ton of additional feature engineering that you
can do to improve predictive performance. For example, you might want to use additional log

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 122 01/13/22 07:31 AMtad71671_ch03_100-150.indd 122 01/13/22 07:31 AM

122 Chapter 3 Regularization and Selection

transforms or include factor representations of additional variables. There are also interesting
interaction variables to consider (e.g., many of the variables are related to house condition
and these can be interacted with the variables related to house size). For this illustration we
will keep things simple, but we encourage you to explore the data further and try to engineer
features that improve predictive performance. The regularization and selection tools of this
chapter will allow you to build a really sophisticated prediction model.

Missing Data
Before we create our model matrix, we need to deal with a common issue: missing data. If you look
at the data frame of observations, 13960 of the entries are NA (this is R’s code for “not available”).

> sum(is.na(ames))

[1] 13960

This indicates that these entries are missing in the assessor’s data. Looking at some individual
variables, we see examples of missing entries in Pool.QC (a quality category for the swimming
pool) and Lot.Frontage.

> summary(ames$Pool.QC)

 Ex Fa Gd TA NA's

 4 2 4 3 2917

> ames$Lot.Frontage[11:15]

[1] 75 NA 63 85 NA

Presumably, Pool.QC is missing because most properties do not include a swimming pool. The
Lot.Frontage variable—the feet of street connected to the property—could be missing for a
variety of reasons. Perhaps it is because the property has zero frontage (although some of these
missing values correspond to houses with large property areas) or perhaps it is just a variable
that is not always recorded.

Dealing with missing data is straightforward with the naref function provided as part of
the gamlr library. We already used naref to set NA as the reference level for factor variables
(so that sparse.model.matrix creates a model matrix column for every other factor level).
When you have missing data, the missing observations on this factor are assigned to this ref-
erence level. You can also call the naref function with the argument impute=TRUE to impute
a value for the missing observations in numeric variables. See the box “Dealing with Missing
Data” for details on how naref works to impute missing values with the mean for that variable
or, if the variable is sparse (mostly zero), with zero.

We apply naref to the ames data, with impute=TRUE, to obtain amesImputed as a data
frame that contains no missing values.

> library(gamlr)

> amesImputed <- naref(ames, impute=TRUE)

> sum(is.na(amesImputed))

[1] 0

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 123

tad71671_ch03_100-150.indd 123 01/13/22 07:31 AMtad71671_ch03_100-150.indd 123 01/13/22 07:31 AM

The factors now all have <NA> as their reference level, and numeric variables with missing val-
ues have been replaced by var.x which has no missing values (these have been imputed) and
var.miss that is 1 if the entry was imputed and 0 otherwise.

> summary(amesImputed$Pool.QC)

<NA> Ex Fa Gd TA

2917 4 2 4 3

> amesImputed$Lot.Frontage.x[11:15]

[1] 75.00000 69.22459 63.00000 85.00000 69.22459

> amesImputed$Lot.Frontage.miss[11:15]

[1] 0 1 0 0 1

Again, refer to the “Missing Data” box for detail on how we deal with missing data.

Missing data is an issue that will occur repeatedly in practice. Incomplete observations
occur for a variety of reasons. In some cases, data will be missing because the variable
doesn’t make sense for that observation (e.g., pool quality for a house without a pool).
In survey data, you can have variables that are missing because people don’t answer all
of your questions. And in any telemetry data (e.g., for anything from tracking industrial
processes to tracking online customer behavior) information is often missed or dropped
in processing.

The naref function from gamlr is useful to prepare data with missingness for use in
regression analyses. We will describe here how it deals with each of categorical (factor)
and numeric (numeric or integer) variables.

For factor variables, you simply treat the missing observations as a separate category.
As described earlier in this chapter, adding NA as a new reference level for each factor
variable forces R to have a separate coefficient for each observed factor level. Recall that
in Example 3.4 the original data frame is ames and amesImputed is the output from call-
ing naref on this original data.

Dealing with Missing Data

> summary(ames$Pool.QC)

 Ex Fa Gd TA NA's

 4 2 4 3 2917

> summary(amesImputed$Pool.QC)

<NA> Ex Fa Gd TA

2917 4 2 4 3

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 124 01/13/22 07:31 AMtad71671_ch03_100-150.indd 124 01/13/22 07:31 AM

124 Chapter 3 Regularization and Selection

In the original data, Pool.QC had mostly missing values. In amesImputed, the output
from naref, these missing values are allocated to a new reference factor level called
<NA>. When you build a model matrix using amesImputed, the impact on expected
response from these missing values will be subsumed into the intercept (i.e., such that the
Pool.QC factor level effects will be interpretable as being relative to a property with no
swimming pool).

For numeric variables, you need to replace the missing values with a numeric value.
This is referred to as data imputation. There are a bunch of different ways that you can do
this—missing data imputation, or guessing what the missing values would have been, is
an interesting regression problem in its own right. Two simple approaches that work well
for most problems are zero and mean imputation. In the former, which we recommend
for sparse variables (those that are mostly zero), you replace missing values with zero. In
the latter, you replace the missing values with the mean of the nonmissing entries. Mean
imputation has better theoretical properties because observations close to the mean have
less impact on your fitted regression coefficients (they have low leverage). But zero impu-
tation can be preferable if you have sparse data and you don’t want to lose that convenient
sparsity by imputing a bunch of close-but-not-quite-zero values (when variable is mostly
zero, the mean tends to be near zero).

The naref function has the argument pzero which is used to decide between mean
and zero imputation. If the proportion of zeros in the nonmissing entries is greater than
pzero, then it does zero imputation. Otherwise it does mean imputation. The default is
pzero=0.5 so that you will impute zeros if more than half of the values are zero. If you
want to force zero imputation, then you specify pzero=0.

Looking at our Ames housing data, the feet of property frontage is a numeric variable
with missing values. After running naref with impute=TRUE, the missing entries have
been replaced with the mean of the nonmissing values.

The single variable Lot.Frontage has been replaced with two columns, Lot.Frontage.x
which contains the numeric values after imputation, and Lot.Frontage.miss which is
a binary variable with 1 for those observations that were missing and are now imputed.
Notice that the imputed value is around 69, indicating that the average feet of frontage is
around 69 for properties where this is not missing.

For an example of zero imputation, consider the Bsmt.Full.Bath variable that counts
the number of full bathrooms in the house basement. This variable is 58% zeros and has
two NA values. Since this proportion of zeros is higher than the default pzero=0.5, naref
has replaced the missing values with zero.

> ames$Lot.Frontage[11:15]

[1] 75 NA 63 85 NA

> amesImputed$Lot.Frontage.x[11:15]

[1] 75.00000 69.22459 63.00000 85.00000 69.22459

> amesImputed$Lot.Frontage.miss[11:15]

[1] 0 1 0 0 1

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 125

tad71671_ch03_100-150.indd 125 01/13/22 07:31 AMtad71671_ch03_100-150.indd 125 01/13/22 07:31 AM

Again, naref outputs both the .x imputed numeric variable and a .miss indicator for
whether or not the original value was missing.

You should always include the missingness indicator (e.g., Bsmt.Full.Bath.miss
and Lot.Frontage.miss) in your analysis because the fact that data were missing might
itself be useful information. For example, the missing Lot.Frontage values might occur
because those houses have no yard. The only situation where you can ignore the fact that
data was missing is if it was missing completely at random: if the probability of data being
missing is independent from the other characteristics of the observation. This is unlikely
to be true in practice. And even if it is true, including the missingness indicator will make
your analysis more robust to the accuracy of your missing data imputation procedure.

Finally, note that none of the observations of SalePrice were missing in the original ames
data frame. When you are doing data imputation, you never want to impute missing values in
your response variable. An observation with a missing response should simply be dropped from
your analysis (although if you have a large number of missing responses you need to understand
why that happened and how it impacts your interpretation of what you are predicting).

> mean(ames$Bsmt.Full.Bath==0, na.rm=TRUE)

[1] 0.5829918

> ames$Bsmt.Full.Bath[1341:1344]

[1] 1 NA 0 0

> amesImputed$Bsmt.Full.Bath.x[1341:1344]

[1] 1 0 0 0

> amesImputed$Bsmt.Full.Bath.miss[1341:1344]

[1] 0 1 0 0

Building the Model Matrix
Once you have constructed the data frame amesImputed, which has imputed missing numeric
values and created a <NA> reference level for all factors, you can proceed with Lasso estima-
tion. The first step is to extract the response variable, y, as the log of the property sale price.

> yAmes <- log(ames$SalePrice)

> head(yAmes)

[1] 12.27839 11.56172 12.05525 12.40492 12.15425 12.18332

The next step is to create the numeric model matrix. We do that here using sparse.
model.matrix and a formula that specifies regression onto every variable except the SalePrice
column that we used to create our log sale price response.

> ycol <- which(names(amesImputed)==“SalePrice”)

> xAmes <- sparse.model.matrix(~ ., data=amesImputed[,-ycol])
[,-1]

> dim(xAmes)

[1] 2930 339

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 126 01/13/22 07:31 AMtad71671_ch03_100-150.indd 126 01/13/22 07:31 AM

126 Chapter 3 Regularization and Selection

The result is a 339 column model matrix (note that we used [,-1] to remove the intercept). As
mentioned earlier, you can create much more complex regression models here by combining
and interacting variables. The “main effects only” model is a starting point but you can expand
it yourself by changing the regression formula that defines x.

Fitting the Lasso Path
Now that we have x and y, we can apply gamlr to fit the Lasso regularization paths.

> fitAmes <- gamlr(xAmes, yAmes, lmr=1e-4)

Note that we have specified lmr=1e-4 here to set a smaller than default (lmr=1e-2) ratio for the
smallest λT relative to the starting λ1. This tells gamlr to run the Lasso path down to a smaller
level of penalization. The fitted path is shown in Figure 3.9b. For comparison, the path plot cor-
responding to a default specification with lmr=1e-2 is shown in Figure 3.9a. While the default
path stops at λT ≈ e−6, our specified path goes down to λT < e−10. This allows for many more
nonzero estimated coefficients at the end of the path (from the plot headers, 301 for lmr=1e-4
vs 115 for lmr=1e-2) and these estimated coefficients are allowed to move further from zero.

Note that the vertical dashed lines on the plots in Figure 3.9 correspond to the “best” model
as selected by the AICc selection rule introduced in the next section. By this rule, the “best”
model is at the edge of the λt values evaluated using lmr=1e-2. Whenever your best model is at
the lowest-penalty edge of the space of models you are considering (i.e., if your selection rule
chooses the model at λT) you should consider re-running the path algorithm to consider smaller
penalization levels.

The Fitted gamlr Object
The fitted gamlr object, which we’ve names fitAmes, contains the data behind the path
plots shown in Figure 3.9. For example, we can see that gamlr fit 100 λt segments and that
λ100/λ1 = 1/10000.

FIGURE 3.9 The Lasso regularization paths for Ames house sale price using gamlr with default lmr=1e-2 in
(a), and with lmr=1e-4 in (b). In our analysis we use the specification in (b) such that λT/λ1 = 1/10000.

(a)

115 51 17 6 1
301 268 115 19 1

(b)

–5

–2
.0

–2
.5

–1
.5

–0
.5

0.
5

–1
.5

–1
.0

–0
.5

0.
0

–4 –3 –2 –1
log lambda

–10 –8 –6 –4 –2
log lambda

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 127

tad71671_ch03_100-150.indd 127 01/13/22 07:31 AMtad71671_ch03_100-150.indd 127 01/13/22 07:31 AM

The fitted coefficients for each segment, β ̂ t , are columns of the beta attribute.

> length(fitAmes$lambda)

[1] 100

> fitAmes$lambda[100]/fitAmes$lambda[1]

seg100

 1e-04

> dim(fitAmes$beta)

[1] 339 100

> sum(fitAmes$beta[,100]!=0)

[1] 300

At the end of the path there are 300 nonzero β ̂ 100,j coefficients. This plus the intercept gives the
301 nonzero parameters marked on the left of the header in Figure 3.9b. We can pull out some
coefficients from the first and last two segments.

> fitAmes$beta[

+ c(“Overall.Qual”,“Lot.Area”,“Lot.Frontage.x”,“Lot.Frontage.
miss”),

+ c(1:2,99:100)]

4 x 4 sparse Matrix of class “dgCMatrix”

 seg1 seg2 seg99 seg100

Overall.Qual . 0.0211872 0.0497281614 0.0497218631

Lot.Area . . 0.0864251705 0.0864501758

Lot.Frontage.x . . 0.0001757198 0.0001758566

Lot.Frontage.miss . . 0.0049547699 0.0049655247

The first variable to enter the path with a nonzero coefficient is Overall.Qual, which rates the
overall finish and construction of the house from 1 (very poor) to 10 (very excellent). Clearly
the condition of your house has a major impact on its sale price. The lot size and frontage vari-
ables do not get nonzero coefficients until later in the path. Notice that the missingness indica-
tor Lot.Frontage.miss has a positive estimated coefficient. The estimation has determined
that the missing frontage entries tend to occur for more expensive properties.

Again, we emphasize that path estimation is just the first step of model construction. You
don’t know which path segment is most useful for prediction until you apply the model selec-
tion techniques of later sections.

Example 3.5 Telemarketing Data: Lasso Logistic Regression To illustrate Lasso logistic
regression for a binary response, we will use the Telemarketing data from Moro et al. (2011).
The telemarketing.csv data set consists of observations from the marketing campaign of a

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 128 01/13/22 07:31 AMtad71671_ch03_100-150.indd 128 01/13/22 07:31 AM

128 Chapter 3 Regularization and Selection

Portuguese bank that was trying to get customers to subscribe to a term deposit product. Term
deposits are basically loans to the bank: you deposit money that you will not be able to access
for an agreed length of time, and in exchange the bank pays you a higher interest rate on this
deposit than you would get on money that you can access at any time.

We read the data in as the tlmrk data frame.

> tlmrk <- read.csv(“telemarketing.csv”, strings=T)

> dim(tlmrk)

[1] 4521 15

> tlmrk[1,]

 age job marital education default balance housing loan

1 30 unemployed married primary no 1787 no no

 contact campaign durmin previous poutcome pweek subscribe

1 cellular 1 1.316667 0 unknown 0 0

The variables here include demographic information and finances such as their account
balance and whether they have an existing housing or personal l ° oan . We also have data about
the marketing campaign for this customer, including

 • campaign: number of contacts performed during this marketing campaign for this client.
 • contact: the format of the most recent contact (land-line or cell phone).
 • durmin: the length of time in minutes for the most recent phone conversation with the

customer.
 • previous: the number of previous contacts with this customer before the current market-

ing campaign.
 • poutcome: the outcome of the previous marketing campaign for this customer.
 • pweek: the weeks that have passed since the customer was last contacted during the previ-

ous campaign.

All of this data is important for designing marketing campaigns. People do not usually like
getting calls from telemarketers. When designing a campaign, you want your sales agents call-
ing only people who are likely to subscribe and not bothering those who are not. In addition,
variables like durmin tell you how long it takes your agents to close the deal and when they are
spending too much time on the phone. It is a waste of time and money for everyone to spend too
long talking to a customer who will not be convinced to subscribe.

Our response of interest is the binary variable subscribe that indicates whether or not the
customer ended up subscribing to a term deposit. We pull it out as the variable yTD.

> yTD <- tlmrk$subscribe

> mean(yTD)

[1] 0.11524

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 129

tad71671_ch03_100-150.indd 129 01/13/22 07:31 AMtad71671_ch03_100-150.indd 129 01/13/22 07:31 AM

Roughly 11.5% of the customers end up subscribing to the term deposits.
There are no NA entries in this data, so we don’t need to worry about missing data imputa-

tion. However, we will still run naref to create <NA> as the reference level for factor variables.
Since the data contain the level unknown for many factors, we could have also gone through
and set that as the reference level. However, it is convenient to simply call naref and you get
the result that all factor effects will be interpretable as variations around an overall average
intercept.

> sum(is.na(tlmrk))

[1] 0

> library(gamlr)

Loading required package: Matrix

> tlmrkX <- naref(tlmrk[,-15])

> levels(tlmrkX$job)

 [1] NA “admin.” “blue-collar” “entrepreneur”

 [5] “housemaid” “management” “retired” “self-employed”

 [9] “services” “student” “technician” “unemployed”

[13] “unknown”

Notice that we removed column 15 when creating the tlmrkX data frame using naref. This
was the column containing our response, subscribe, so that now tlmrkX contains only the
input variables.

Building the Model Matrix
Now we are ready to build our numeric model matrix. This time, we will include all of the
input variables interacted with each other and create a new variable as durmin^2 to allow
the probability of success to change quadratically (as a curve) during the phone call. We use
I(durmin^2) in the regression formula to tell R to create a new variable named I(durmin^2)
representing the square of durmin.

> xTD <- sparse.model.matrix(~.^2 + I(durmin^2), data=tlmrkX)

> dim(xTD)

[1] 4521 656

The resulting model matrix has n = 4521 observations on J = 656 columns.

Fitting the Logistic Lasso Regression Path
You can fit a logistic Lasso path with gamlr by specifying family=“binomial”.

> fitTD <- gamlr(xTD, yTD, family=“binomial”)

The resulting Lasso path is shown in Figure 3.10a. We kept the default lmr=1e-2 here such
λ100/λ1 = 1/100. As before, the fitted gamlr object contains all of the estimated β ̂ t coefficients
for each segment. You can pull out any specific segment, and Figure 3.10b shows the fitted y ̂

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 130 01/13/22 07:31 AMtad71671_ch03_100-150.indd 130 01/13/22 07:31 AM

130 Chapter 3 Regularization and Selection

probabilities of success corresponding to the segment at the dashed line in Figure 3.10a (this is
the AICc selected segment; see the next section for details). In the code below we pull out the
first and last two segment coefficients on durmin and I(durmin^2), the minutes and squared
minutes spent on the phone call.

FIGURE 3.10 Panel (a) shows the Lasso regularization path for prediction of telemarketing call success, and
(b) shows the fitted values corresponding to the AICc selected segment of coefficients at the dashed line in (a).

(a) (b)
log lambda

–6

–4
–2

0
2

0.
0

0 1

0.
2

0.
4

0.
6

0.
8

1.0

4
6

234 110 33 9 1

–5 –4 –3 –2

C
oe

ffi
ci

en
t

y.
ha

t

yTD

> fitTD$beta[c(“durmin”,“I(durmin^2)”),c(1:2,99:100)]

2 x 4 sparse Matrix of class “dgCMatrix”

 seg1 seg2 seg99 seg100

durmin . 0.01244651 0.338559757 0.340290880

I(durmin^2) . . -0.009229655 -0.009359627

The minute length durmin is the first variable to enter the path with a nonzero coefficient, indi-
cating that this variable has strong predictive signal on the outcome of the phone call.

3.3 Model Selection
The Lasso is used to obtain paths of promising candidate variables. Running gamlr with the
default nlambda=100 gives us 100 vectors of fitted coefficients β ̂ t based on 100 different pen-
alties λt. Once you have this path, you need to do model selection to choose the best vector of
coefficients to use for prediction. There are a number of different ways to do this, but all can be
thought of as having the same motivation: select the model that does the best job predicting out
of sample. The term “best job” will have different meanings in different applications. In some
cases, you will simply want to get the best (lowest) average OOS deviance. In other cases, you
might be motivated to trade some average performance for a more robust model—a simpler
model that may have slightly higher OOS deviance but has less probability of producing the

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 131

tad71671_ch03_100-150.indd 131 01/13/22 07:31 AMtad71671_ch03_100-150.indd 131 01/13/22 07:31 AM

occasional really bad prediction. Regardless, you are always using some concept of predictive
performance as the foundation for your model selection.

The benefit of the Lasso is that you have indexed your potential models with a single
parameter: λ. This penalty weight is a signal-to-noise filter. It works like the squelch on a VHF
radio (or, to be a bit more contemporary, the noise canceling level on a cellular phone). If you
turn it all the way up, you don’t hear anything. If you turn it all the way down, you hear only
static. The key to being able to communicate on a radio is finding the sweet spot in the middle
where you hear the other person’s voice and none of the background noise. It is the same for
good statistical prediction: you need to find the λ that gives you good signal with little noise.
Looking at the Lasso path plots, “all the way up” is the far right where all coefficients are zero,
and “all the way down” is the far left where most coefficients are nonzero.

When you do model selection on Lasso paths, you should think about what you are doing
as selecting the best λt. In contrast to subset selection, where you need to consider all possible
combinations of input variables (or a greedy search through possible combinations), with the
Lasso you are considering selection only for this tuning parameter: the penalty weight that acts
as your signal-to-noise filter. In this section we will introduce two different frameworks for
selecting λ. The first framework is built on information criteria that combine in-sample devi-
ance with the model degrees of freedom to estimate OOS predictive performance. The second
framework is built around the sort of cross-validation experiments that we saw earlier in this
chapter, where you split the data into folds and use OOS predictive performance across folds to
get an estimate of future OOS performance.

3.3.1 Information Criteria
Information criteria (IC) are theoretical approximations to what OOS deviance you can expect
when using your model to predict new data. Compared to running cross-validation experi-
ments, IC estimates of OOS performance have the advantage of being fast (you need to fit
the Lasso path only once, to your original dataset) and deterministic (there is no Monte Carlo
variation due to random sampling). We use information criteria a lot in this book, especially the
AICc that will be introduced below, and our practical experience is that this is a convenient and
robust foundation for model selection.

There are many information criteria out there. We will look at Akaike’s AIC, its corrected
version AICc, and the Bayesian BIC. All of these IC attempt to approximate the distance
between a fitted model and draws from the “true model” using different analytic approxima-
tions. That is, the IC are all attempting to approximate the OOS deviance (the distance between
new data and the fitted model). Since the IC measure a distance, you can apply them in model
selection by choosing the model with minimum IC.

The information criteria all take the form

 IC(β ̂) = dev(β ̂) + κ ⋅ df (3.8)

where dev(β ̂) is the in-sample deviance and df is the model degrees of freedom: the number of
observations that the procedure you used to estimate β ̂ should be able to fit exactly (refer back
to Chapter 1 for more discussion on the model degrees of freedom). As we will describe below,
df for the Lasso is equal to the number of nonzero estimated parameters.

Note that the deviance calculations used for Eqution (3.8) require you to use the full devi-
ance formula that expands the constant C from Equation (1.26). This constant includes a bunch

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 132 01/13/22 07:31 AMtad71671_ch03_100-150.indd 132 01/13/22 07:31 AM

132 Chapter 3 Regularization and Selection

of negative log likelihood terms that don’t change with β ̂ . However, this will be taken care of by
the R functions you use to calculate ICs.

The term κ in (3.8) is the IC complexity penalty: it is the price you pay for adding addi-
tional degrees of freedom to your model. Equation (3.8) looks similar to the penalized deviance
equations, like (3), that we used to define our Lasso regression estimator. And it is similar! You
are combining an in-sample deviance with a price on complexity. You apply the IC equation to
evaluate models fit to optimize a penalized deviance, and the value of κ that you want to use is
derived from theory rather than being a tuning parameter that you estimate from the data.

Recall the simulated data example that opened this chapter. We aplied models with 2, 3,
and 19 parameters (linear, quadratic, and 18-degree polynomial regression) fit to a cloud of
points. The model selection goal is to select the “just right” model in Figure 3.1 that fits the
persistent pattern but doesn’t overfit to noise. In this example, which used OLS to estimate the
coefficients, the model degrees of freedom is equal to the number of parameters in each model
(2, 3, and 19). The correct value of κ in our IC of Equation (3.8) should lead to the IC being
lowest for the 3-parameter quadratic model. Even though the 18-degree polynomial fits the
data perfectly (and has zero in-sample deviance), you should have that the complexity penalty
κ · 19 is large enough to compensate for this low in-sample deviance.

The AIC
A common IC is Akaike’s information criterion, the AIC. The AIC is an attempt to approximate
the average OOS deviance on new data. Through a lot of theoretical statistics work, Akaike
(1973) determined that the “right” complexity penalty to approximate the OOS deviance is
simply κ = 2.

 AIC(β ̂) = dev(β ̂) + 2 ⋅ df (3.9)

This AIC score is an output of many standard statistical software routines. For example, in
Example 3.1, in the semiconductor dataset, we used glm to fit the 25-input cut logistic regres-
sion model. The printed information from calling summary on the cut object includes the AIC.

> summary(cut)

...

 Null deviance: 731.59 on 1476 degrees of freedom

Residual deviance: 599.04 on 1451 degrees of freedom

AIC: 651.04

> 599.04 + 2*26

[1] 651.04

The AIC here is equal to the in-sample deviance, 599.04, plus two times the number of parame-
ters in the model (26 for the 25 inputs plus the intercept). Recall that, confusingly, what R calls
degrees of freedom here is actually the residual degrees of freedom: the number of opportu-
nities to observe error variability around the fitted model, or n − df in our notation. There are
n = 1477 observations here, and 1477 − 26 = 1451 as in the R output (note that the residual
degrees of freedom for the null model is n − 1 since it just fits a single mean response parameter).

In maximum likelihood estimation, as applied inside glm, the df is simply the number of
parameters in the model. More generally, the df measures the in-sample correlation between y ̂

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 133

tad71671_ch03_100-150.indd 133 01/13/22 07:31 AMtad71671_ch03_100-150.indd 133 01/13/22 07:31 AM

and y—how much flexibility you have to make the model fit look like the observed data. For
important theoretical reasons (Zou et al., 2007) the Lasso, like for MLE fitted models, has df
simply equal to the number of nonzero β ̂ j at a given λ. This is not true for any other penalization
cost function. For example, if you use a ridge penalty in your penalized deviance minimization
then all coefficients will be nonzero, but df will be less than the full model dimensions because
the coefficients are shrunk toward zero.

It is a massive advantage for the Lasso that you have a simple measure of the number of
degrees of freedom (the number of nonzero estimated parameters) at a given λ penalty weight.
This fact lets you apply ICs to choose the best Lasso model. For example, R has the AIC func-
tion that you can apply to a fitted gamlr object. Here we apply it to the telemarketing example
Lasso path from Example 3.5.

> AIC(fitTD)

 seg1 seg2 seg3 seg4

3233.000 3173.971 3123.801 3081.680

...

 seg97 seg98 seg99 seg100

2293.355 2297.469 2295.603 2296.141

> which.min(AIC(fitTD))

seg92

 92

> sum(fitTD$beta[,92]!=0)

[1] 185

> fitTD$lambda[92]

 seg92

0.001858245

The minimum AIC score occurs for the 92nd segment, with λ92 ≈ 0.00186 and 185 nonzero
coefficients in β ̂ 92 .

The Corrected AICc
The AIC is the most commonly applied IC, but you should not use the AIC. We introduced the
AIC only as a stepping stone to the superior corrected AIC that we now describe. When you
have a lot of potential parameters in your model, the AIC will tend to overfit. The reason why
this happens is worth understanding because it motivates the IC that you should use: the cor-
rected AICc. The AIC overfits because the actual κ that Akaike derives as optimal for linear
regression is

 κ = 2𝔼 [σ 2 _
 σ ̂ 2

] (3.10)

where σ2 is the true error variance and σ ̂ 2 is the variance of your fitted residuals. Akaike made
the simplifying assumption that the variance of the residuals is a good approximation to the true
error variance, such that σ ̂ 2 ≈ σ 2 and you can simplify Equation (3.10) to say κ ≈ 2. However,

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 134 01/13/22 07:31 AMtad71671_ch03_100-150.indd 134 01/13/22 07:31 AM

134 Chapter 3 Regularization and Selection

an overfit model (e.g., our 18-degree polynomial from the chapter opening) will have very
small residuals because the model is fitting the noise. That implies that σ2 will be much bigger
than σ ̂ 2 and κ = 2 will be too small a complexity penalty.

It turns out that you can actually predict the ratio of variances in (3.10) as

 𝔼 [σ 2 _
 σ ̂ 2

] ≈ n _______
n − df − 1 (3.11)

This approximation comes from the theoretical definition of degrees of freedom. It leads to
the corrected AIC (Hurvich and Tsai, 1989) with κ = 2n/(n − df − 1),

 AICc(β ̂) = dev(β ̂) + n _
n − df − 1 2 ⋅ df (3.12)

You should use the AICc for IC-based model selection. Although motivated using a ratio of
error variances in linear regression, it also works for logistic regression or any other general-
ized linear model (fit via likelihood maximization or with Lasso estimation). Notice that for big
n/df, the AICc becomes similar to the AIC as the ratio n/(n − df − 1) gets closer to one. Hence,
the AIC will work well for large n/df (which is the classical statistics setting where it was devel-
oped) while the corrected AICc works for any n/df you encounter.

The gamlr package uses AICc for selection by default. The AICc selected segment is
marked on the path plot with a vertical line (see Figures 3.9 or 3.10a, for example), and if you
call predict or coef on a fitted gamlr object it will give you results corresponding to the
AICc minimizing path segment.

The BIC
Before diving into AICc selection for our Lasso examples, we note one additional IC that you
will sometimes encounter. The BIC, where B stands for Bayes, is motivated from the Bayesian
inference ideas we outlined in Chapter 2. Instead of attempting to predict the average OOS
deviance for candidate models, as the AIC and AICc do, the BIC is attempting to approximate
the posterior probability that each model is best. This subtle difference leads it to select more
simple (fewer parameter) models than you get from the AICc. A more complex model might
have lower expected OOS deviance, but higher variation in OOS deviance around this expec-
tation. For example, you have higher probability of getting a bad model fit from an unlucky
training sample when you are working with more model complexity.

Schwarz et al. (1978) developed the BIC around the same time as Akaike’s work on the
AIC. The Schwarz complexity penalty is κ = log(n), such that

 BIC(β ̂) = dev(β ̂) + log (n) ⋅ df (3.13)

Although the BIC can be useful for model selection in small sample settings, for most applica-
tions the log(n) complexity penalty tends to be too large. That is, the BIC will tend to underfit
and choose overly simple models. You can treat it as giving a lower bound on the amount of
useful model complexity.

Example 3.6 Ames Housing Data: IC Model Selection Returning to the house price
prediction of Example 3.2, we have fitAmes as our gamlr object containing the fitted Lasso
path. Since gamlr uses the AICc as its default model selection rule, if you call coef on this
object you will get the coefficients corresponding to the AICc-minimizing path segment.

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 135

tad71671_ch03_100-150.indd 135 01/13/22 07:31 AMtad71671_ch03_100-150.indd 135 01/13/22 07:31 AM

The output is in a Matrix library sparse format. We will drop the intercept and convert it to a
dense vector before exploring the selected β ̂ coefficients.

> bAmes <- coef(fitAmes) ## coefficients selected under AICc

> head(bAmes)

6 x 1 sparse Matrix of class “dgCMatrix”

 seg62

intercept 4.5352809

MS.ZoningA (agr) -0.3664627

MS.ZoningC (all) -0.1779210

MS.ZoningFV .

MS.ZoningI (all) .

MS.ZoningRH .

> bAmes <- bAmes[-1,]

> sum(bAmes!=0)

[1] 195

> tail(sort(bAmes),3) ## big increaser

Kitchen.QualPo Exterior.1stPreCast NeighborhoodGrnHill

 0.1132968 0.3267350 0.4425938

> bAmes[c(“Lot.Area”,“Lot.Frontage.x”,“Lot.Frontage.miss”)]

 Lot.Area Lot.Frontage.x Lot.Frontage.miss

 7.525206e-02 9.585679e-05 0.000000e+00

The AICc selects a model with 195 nonzero coefficients. The largest positive coefficient is
the effect of the property being in the Green Hill neighborhood, and we notice that in the
selected model the missingness indicator for Lot.Frontage has a zero coefficient: the AICc
has decided that the fact that this variable is missing is not a useful predictor of house price.
You can call the AICc function on fitAmes to see the AICc values underlying this selection.

> which.min(AICc(fitAmes))

seg62

 62

> fitAmes$lambda[62]

 seg62

0.001154232

We find that the AICc has selected λ62 ≈ 0.00115 as the best penalty weight.
The predict function also uses AICc selection by default. For example, if we call

predict on fitAmes for the 1st and 11th observations we get (after exponentiating the predicted
log price) expected sale price values of around $210k and $170k.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 136 01/13/22 07:31 AMtad71671_ch03_100-150.indd 136 01/13/22 07:31 AM

136 Chapter 3 Regularization and Selection

Notice that we applied drop to yhat to convert the predictions from special sparse Matrix
format to a simple vector. You will often want to take this step when working with predictions
from gamlr.

To use the other IC for model selection, you apply the appropriate function to the fitted
gamlr object to get the set of IC scores and then find the segment with the minimum score.
This segment can then be passed to coef (and to predict) with the select argument to get
results for that specified path segment.

> (yhat <- predict(fitAmes, xAmes[c(1,11),]))

2 x 1 Matrix of class “dgeMatrix”

 seg62

1 12.25147

11 12.05597

> drop(yhat)

 1 11

12.25147 12.05597

> exp(drop(yhat))

 1 11

209289.1 172123.5

> (bicsel <- which.min(BIC(fitAmes)))

seg48

 48

> bAmesBIC <- coef(fitAmes, select=bicsel)[-1,] ## and BIC

> sum(bAmesBIC!=0)

[1] 95

We see here that the BIC selects λ48 which corresponds to 95 nonzero coefficients (about half
of what the AICc selected). The AIC ends up selecting the same segment as the AICc: that with
195 coefficients at λ62.

> (aicsel <- which.min(AIC(fitAmes)))

seg62

 62

The AIC and AICc give the same results here because n is much larger than the full potential df
(we have 2930 observations on 339 input dimensions), such that the correction ratio is close to
one: 2930/(2930 − 339 − 1) ≈ 1.13. All of the IC surfaces are plotted in Figure 3.11a. The AIC
and AICc scores are very similar, again due to the high n/df ratio.

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 137

tad71671_ch03_100-150.indd 137 01/13/22 07:31 AMtad71671_ch03_100-150.indd 137 01/13/22 07:31 AM

We are presenting all of the options here so that you can understand what to expect when
you encounter AIC, AICc, or BIC model selection in practice. However, you should use the
AICc as your default IC for model selection.

Example 3.7 Telemarketing Data: IC Model Selection Turning to logistic regression and
our telemarketing example, recall that we have the fitted gamlr object fitTD for prediction
of call success (getting the customer to subscribe to a term deposit) as a function of customer
characteristics and campaign information.

The default AICc selection chooses a model with 90 nonzero coefficients.

FIGURE 3.11 Information criteria scores as a function of the λt penalty weights for each of our Ames
Housing (a) and Telemarketing (b) examples.

(a) Ames Housing

0.
50

0.
55

0.
60

0.
65

0.
70AICc

AIC
BIC

IC
/n

IC
/n

(b) Telemarketing

–10

–4
.5

–4
.0

–3
.5

–3
.0

–2
.5

–2
.0

–8 –6 –4 –2 –6 –5 –4 –3 –2
log lambda log lambda

AICc
AIC
BIC

> bTD <- coef(fitTD)[-1,] ## coefficients selected under AICc

> sum(bTD!=0)

[1] 90

Notice that we appended [-1,] on the exctracted coefficients to remove the intercept and
drop the Matrix formatting. We can pull out the coefficients on the length of the phone call.

> bTD[c(“durmin”,“I(durmin^2)”)]

 durmin I(durmin^2)

 0.276468974 -0.004644089

The AICc selected model has a positive coefficient on durmin and a negative coefficient on
durmin2, such that the odds of success will increase with the beginning of the phone call but
eventually start to decrease as time progresses.

The BIC selects a much simpler model with only 20 nonzero coefficients and the AIC
selects a much more complex model with 185 nonzero coefficients.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 138 01/13/22 07:31 AMtad71671_ch03_100-150.indd 138 01/13/22 07:31 AM

138 Chapter 3 Regularization and Selection

All three IC scores are shown as a function of λ in Figure 3.11b. The AIC and AICc match up
at large λ, where the correction n/(n − df − 1) ≈ 1, but then start to separate from each other at
larger values. Both AIC and AICc surfaces have a very different shape from the BIC.

3.3.2 Cross-Validation for Lasso Paths
An alternative to IC model selection is to apply the sort of cross-validation (CV) experiment
we described in Algorithm 3.1. For Lasso paths, you want to design a CV experiment to eval-
uate the OOS predictive performance of different λ penalty values. This is in contrast to CV
for subset selection, where you evaluated different pre-set subsets of variables inside the CV
experiment. To execute Algorithm 3.1 for Lasso paths, you need to

 • Fit the Lasso path for the full dataset to get a grid of candidate λt penalties.
 • Run a CV experiment where you split your data into K folds and apply these λt penalties in

Lasso estimation on the training data excluding each fold. Record OOS deviances for pre-
diction on each left-out fold.

 • Select the λt with “best” OOS performance. Your selected model is defined by the corre-
sponding β ̂ t coefficients that were obtained through Lasso estimation on the full dataset
with penalty λt.

How Many Folds?
A common question around CV is How do I choose K? The short answer is that more is better
(it reduces the Monte Carlo variation due to random fold assignment) but only up to a point.
Using too many folds gets computationally very expensive. Moreover, using too many folds
(anything approaching K = n) gives bad results if there is even a tiny amount of dependence
between your observations. Smaller values of K lead to CV that is more robust to this type of
mis-specification.

To figure out how many folds is “enough,” note that the variance on your CV estimate of
average OOS deviance is the variance of the K OOS deviances on each left-out fold divided
by √

__
 K (recall from Chapter 2 that the variance on a mean is the variance of the observations

divided by the square root of the number of observations). If you run your CV experiment and
the uncertainty around average OOS deviance is larger than you want, then you can re-run the
experiment with more folds. However, if adding a small number of folds doesn’t significantly
reduce the uncertainty then you are probably better off using the AICc for model selection.

CV Path Plots
Once again, this is all easiest to understand visually. The gamlr library provides the cv.gamlr
function to run CV experiments for Lasso paths. This function uses the exact same syntax as

> bTDbic <- coef(fitTD, select=which.min(BIC(fitTD)))[-1,]

> sum(bTDbic!=0)

[1] 20

> bTDaic <- coef(fitTD, select=which.min(AIC(fitTD)))[-1,]

> sum(bTDaic!=0)

[1] 185

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 139

tad71671_ch03_100-150.indd 139 01/13/22 07:31 AMtad71671_ch03_100-150.indd 139 01/13/22 07:31 AM

the standard gamlr function, and you can pass it any arguments that you would pass to gamlr;
these arguments are used for the full sample path and for the reduced-sample fits inside the CV
experiment. Figure 3.12 shows the results of cv.gamlr on a linear regression example. Just like
the path plot, the CV plot has λ on the x axis and the degrees of freedom (number of nonzero
coefficients) on the top. The average OOS deviances are marked with blue dots, and error bars
are extended one standard error on each side of these estimates of the expected OOS deviance.
From our discussion above, the standard errors are calculated as the variance of the K OOS devi-
ances at each λt value, divided by √

__
 K . The default K for cv.gamlr is nfold=5. If this results in

error bounds that are too large for you to decide which λ is best, then you can simply increase the
number of folds to reduce the standard error on your expected OOS deviance estimates.

Given the results from cv.gamlr, there are two common options for how you select the opti-
mal λt (and hence select your coefficients β ̂ t). The CV-min rule, shown as the leftmost dashed
line in Figure 3.12, simply selects the λt corresponding to the smallest average OOS deviance.
The CV-1se rule, shown as the rightmost dashed line in Figure 3.12, selects the biggest λt with
average OOS deviance no more than one standard error away from the minimum. For most
applications, we recommend using the CV-min rule. This is the best choice if you are focused
on OOS predictive performance. The 1se rule is more conservative: it hedges toward a simpler
model. This can be used if you have a heightened worry about accidentally including useless
coefficients in your model. The CV-1se rule is the default in cv.gamlr (and in cv.glmnet)
but we will often specify that we want to use CV-min selection instead.

Example 3.8 Ames Housing Data: CV Lasso Selection To run a CV Lasso for the Ames
house sale price regression, you can use the same model matrix xAmes and response yAmes that
you previously used as input to gamlr. In Example 3.4 we specified lmr=1e-4 to get smaller λt
values than the default, and we will pass that same argument to cv.gamlr.

FIGURE 3.12 A cross-validated Lasso path plot from cv.gamlr. The blue dots are mean OOS deviances
(here MSE, as this is from a linear regression) and the error bars mark ±1 standard error around the estimated
average OOS deviance. The CV-min and CV-1se selection rules are marked with vertical dashed lines.

log lambda
–6 –5

2.
5

2.
6

2.
7

2.
8

M
SE

873 603 226

Min

40 1

–4 –3 –2

1se

+/− 1se

Avg

Dev
n

> ### cross validation
> set.seed(0)
> cvfitAmes <- cv.gamlr(xAmes, yAmes, verb=TRUE, lmr=1e-4)
fold 1,2,3,4,5,done.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 140 01/13/22 07:31 AMtad71671_ch03_100-150.indd 140 01/13/22 07:31 AM

140 Chapter 3 Regularization and Selection

The verb=TRUE argument leads cv.gamlr to output a progress report as it progresses through the
folds. Notice that we set a random seed here so that if you run this code you should get the exact
same results. The CV experiment results are plotted in Figure 3.13a. We can work through the
attributes of the cvfitAmes object output from cv.gamlr to understand all of the pieces here.

FIGURE 3.13 Cross-validated OOS deviance as a function of the λt penalty weights for each of our
Ames Housing (a) and Telemarketing (b) examples.

(a) Ames Housing

0.
05

0.
50

0.
55

0.
60

0.
65

0.
70

0.
10

0.
15

301
234 110 33 9 1

268 115 19 1

(b) Telemarketing
log lambda log lambda

M
ea

n
sq

ua
re

d
er

ro
r

Bi
no

m
in

al
 d

ev
ia

nc
e

–10 –6 –5 –4 –3 –2–8 –6 –4 –2

> attributes(cvfitAmes)
$names
 [1] “gamlr” “family” “nfold” “foldid” “cvm”
 [6] “cvs” “seg.min” “seg.1se” “lambda.min” “lambda.1se”
> cvfitAmes$gamlr
gaussian gamlr with 339 inputs and 100 segments.
$class
[1] “cv.gamlr”
> cvfitAmes$nfold
[1] 5

There is a gamlr object contained within cvfitAmes. This is the fitted Lasso path for the full
data sample, and it is exactly the same as the fitAmes object that we estimated in Example 3.4.
The nfold attribute here is K, the number of folds, and it is set to 5 by default.

The cvm attribute contains mean OOS deviances and cvs contains their standard errors.
These are vectors with one value for each of the nlambda λt values used in the full sample path.

> cvfitAmes$cvm
 [1] 0.16532834 0.14703130 0.13104589 0.11777469
...
 [97] 0.02118427 0.02121335 0.02122546 0.02123655
> cvfitAmes$cvs
 [1] 0.004943823 0.004566041 0.003893101 0.003353137
...
 [97] 0.004669086 0.004688207 0.004690687 0.004694711

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 141

tad71671_ch03_100-150.indd 141 01/13/22 07:31 AMtad71671_ch03_100-150.indd 141 01/13/22 07:31 AM

The cvm vector contains the blue dots marked on Figure 3.13a and cvs contains the half-length
of the gray error bars. In this case the standard errors are small relative to the range of cvm devi-
ance estimates, and you need to squint at the plot to see them. You can also use the cvm OOS
deviance estimates to get estimates for the OOS R2. We know that the null model corresponds
to the first Lasso path segment where β ̂ 1 = 0 by design. Thus an estimate of the OOS R2 at
any λt is available as one minus the corresponding mean OOS deviance over the first element
of cvm.

> 1 - cvfitAmes$cvm[100]/cvfitAmes$cvm[1]

[1] 0.8715493

The OOS R2 at the end of our Lasso path (at λ100) is around 87%.
The λ penalties selected by CV-min and CV-1se rules (corresponding to the two verti-

cal dashed lines in Figure 3.13a) are in attributes lambda.min and lambda.1se respectively.
These correspond to the segment indices in seg.min and seg.1se.

> cvfitAmes$seg.min

[1] 52

> log(cvfitAmes$lambda.min)

[1] -5.833983

> cvfitAmes$seg.1se

[1] 33

> log(cvfitAmes$lambda.1se)

[1] -4.066342

The CV-min rule selects the 52nd segment with log(λ52) ≈ −5.8, and the CV-1se rule selects
the 33rd segment with log(λ33) ≈ −4.1. You can pass select=“min” or select=“1se” to
coef and predict functions to access coefficients and predictions corresponding to the mod-
els selected under each rule.

> bAmesCVmin <- coef(cvfitAmes, select=“min”)[-1,]

> sum(bAmesCVmin!=0)

[1] 127

> bAmesCV1se <- coef(cvfitAmes, select=“1se”)[-1,]

> sum(bAmesCV1se!=0)

[1] 35

> cbind(bAmesCV1se,bAmesCVmin)[c(“Lot.Area”,“Lot.Frontage.x”),]

 bAmesCV1se bAmesCVmin

Lot.Area 0.0661714 0.07424132

Lot.Frontage.x 0.0000000 0.00000000

We see that the CV-min rule selects a model with 127 nonzero coefficients and the CV-1se
model selects a model with 35 nonzero coefficients. Both selection rules lead to a nonzero

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 142 01/13/22 07:31 AMtad71671_ch03_100-150.indd 142 01/13/22 07:31 AM

142 Chapter 3 Regularization and Selection

coefficient on lot area and a zero coefficient on frontage. Note that the default for cv.gamlr
is to use CV-1se so that if you don’t specify select you will get the same results as for
select=“1se”.

Example 3.9 Telemarketing Data: CV Lasso Selection For the telemarketing logistic
regression example, we apply cv.gamlr to our xTD model matrix and yTD binary response
with family=“binomial”. To illustrate the parallel computing capability of cv.gamlr, we
also used the parallel library to create a parallel cluster and passed it as the cl argument.
This will allow cv.gamlr to run each CV fold iteration in parallel across the processors on your
computer (which is a handy speed-up if each Lasso path takes a while to fit).

> library(parallel)

> cl <- makeCluster(detectCores())

> set.seed(0)

> cvfitTD <- cv.gamlr(xTD, yTD, family=“binomial”, cl=cl)

The results of this CV experiment are plotted in Figure 3.13b. This time it is easier to see the
error bars (from cvfitTD$cvs) around the mean OOS deviance values (from cvfitTD$cvm).
To access select coefficients, we call the coef function and set the different CV selection rules
via the select argument.

> betamin <- coef(cvfitTD, select=“min”)[-1,]

> sum(betamin!=0)

[1] 88

> beta1se <- coef(cvfitTD, select=“1se”)[-1,]

> sum(beta1se!=0)

[1] 18

The CV-min rule returns a model with 88 nonzero coefficients and the CV-1se rule returns a
model with 18 nonzero coefficients.

To illustrate prediction, we will apply the predict function using each CV selection
rule on the 1st and 100th observations. Note that, as was also necessary for glm fitted logistic
regressions, we specify type=“response” to get predicted probabilities rather than x′ β ̂ t . This
outputs predicted probabilities that the campaign resulted in a successful subscription for each
customer.

> yTD[c(1,100)]

[1] 0 1

>
drop(predict(cvfitTD,xTD[c(1,100),],select=“min”,type=“response”))

 1 100

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 143

tad71671_ch03_100-150.indd 143 01/13/22 07:31 AMtad71671_ch03_100-150.indd 143 01/13/22 07:31 AM

Both methods give a probability less than 0.06 for y ̂ 1 (true y1 = 0) and above 0.36 for y ̂ 100
(true y100 = 1). The CV-min selected predictions fit these observations a bit more tightly than the
CV-1se selected predictions (CV-min y ̂ is lower for the true failure and higher for the true success).

The techniques of this chapter give you a diversity of tools for selecting from a path of candidate
models. Figure 3.14 shows the segments selected under all of these different selection rules for both
the Ames housing and telemarketing examples. For most applications, we recommend using either
the AICc or CV-min selection rules. The results for the Telemarketing example, in Figure 3.14b, are
typical in that the AICc and CV-min rules select very similar λ values. Figure 3.14a shows that the
rules give more varied selections in the Ames housing example, where the AICc selects log(λ) ≈
−6.8 and CV-min selects log(λ) ≈ −5.8. However, looking at the Ames Housing CV plot in
Figure 3.13a you can see that the OOS deviance is nearly flat between these two λ values and thus
both are expected to yield similar average OOS deviance. In the case where the AICc selects a
model that your CV experiment predicts will do poorly OOS, then it could indicate that something
weird is going on and that neither is giving a good result (e.g., this can happen when you have
dependence between observations that is not incorporated into your model).

The BIC and CV-1se rules can be used if you have a strong preference for simpler models,
e.g., if you want your model to be portable enough to provide predictions on slightly different
data generating processes than that which produced your training sample. You should never use
the AIC when you could instead use the AICc.

0.04862848 0.42464789

> drop(predict(cvfitTD,xTD[c(1,100),],select=“1se”,type=“response”))

 1 100

0.05605473 0.36512179

FIGURE 3.14 Path plots and the selected segments under all of our IC and CV selection rules, for each
of the (a) Ames Housing and (b) Telemarketing examples.

(a) Ames Housing (b) Telemarketing

301
234 110 33 9 1

268

AICc
AIC
CV.min
BIC
CV.1se

AICc
AIC
CV.min
BIC
CV.1se

115 19 1

–10 –6 –5 –4 –3 –2

–2
.5 –4

–2
0

2
4

6

–1
.5

–0
.5

0.
5

–8 –6 –4 –2
log lambda log lambda

C
oe

ffi
ci

en
t

C
oe

ffi
ci

en
t

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 144 01/13/22 07:31 AMtad71671_ch03_100-150.indd 144 01/13/22 07:31 AM

144 Chapter 3 Regularization and Selection

3.4 Uncertainty Quantification for the Lasso
As a final topic for this chapter, we will touch on techniques for quantifying uncertainty after
you have used model selection to choose a Lasso estimated regression. At the outset, we note
that if you really care about the uncertainty for a set of parameters in your regression you
should look to the purpose-built tools of Chapter 6. In that chapter, we introduce the techniques
of “double ML” and “cross-fitting” that can be used to quantify uncertainty about treatment
effects in the presence of high-dimensional controls—that is, to get uncertainty distributions
for coefficients on specific input variables conditional on a larger set of other predictors.

That said, if you want to quantify uncertainty for functions or parameters of a fitted Lasso,
then you can make use of some of the bootstrapping techniques that we introduced in Chapter 2.
Unfortunately, the standard nonparametric bootstrap of Algorithm 2.2 does not work well for
quantifying uncertainty of a Lasso path selection procedure. The issue with bootstrapping IC
selection is that having repeated with-replacement samples of the same observations makes
your dataset seem less noisy (easier to predict) than it actually is, and the theory behind the
various IC selection rules implies that they will tend to select more complex models on the
bootstrap resamples than they would on a true new sample from the original data generating
process. For CV selection the issue is similar: if you naively bootstrap, then you can have the
same observation repeated both in the kth CV training sample and in the left-out fold. This will
make the OOS prediction seem easier than it actually is, and you will tend to select a more
complex model inside the bootstrap than you would want for a true OOS prediction exercise.

You can adapt the bootstrap to work in this setting by replacing the random with-replace-
ment sampling with a random re-weighting of the original observations. This is referred to
as the Bayesian bootstrap (Rubin, 1981). In each bootstrap iteration, you generate n indepen-
dent random weights from a standard exponential distribution. Draws from this distribution
have the probability density function p(w) = e−w, with 𝔼 [w] = 1 and var(w) = 1, and they are
restricted to be positive (w > 0). The “Bayesian” moniker comes from how this is derived as
the “right” distribution to use for the random weights under a specific prior model. Under this
model, the standard exponential describes the posterior distribution for the prevalence of simi-
lar observations in new samples. However, you can think of it as simply a continuous extension
of the standard bootstrap that is implicitly assigning discrete weights to the observations (0,1,2,
etc; the number of times an observation occurs in each bootstrap sample).

Because the AICc (and other IC) functions are not set up to work with weights on the
observations, applying this Bayesian bootstrap for IC selection would require you to write a
bunch of custom R code. However, for linear regression only, cv.gamlr accepts the obsweight
argument and these weights are applied at every step of the CV experiment (both in train-
ing and in evaluating OOS deviance). We will illustrate this below in quantifying uncertainty
about predicted property prices in the Ames housing example. You can also use cv.glmnet
with the weights argument to apply the Bayesian bootstrap for nonlinear models like logistic
regression.

Another alternative is to use the parametric bootstrap of Section 2.4.2 where each boot-
strap iteration involves simulating new observations from a model fit to the original sample.
This is usually a bad idea for linear regression, because you need to make strong assumptions
about the distribution of the random errors (e.g., Gaussianity and a constant error variance).
However, the parametric bootstrap can be a decent option for logistic regression where the
response distribution is a simple binomial. We will illustrate this approach for estimating the
effect of phone call length on odds of success in the telemarketing example.

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 145

tad71671_ch03_100-150.indd 145 01/13/22 07:31 AMtad71671_ch03_100-150.indd 145 01/13/22 07:31 AM

Example 3.10 Ames Housing Data: Bayesian Bootstrap We will consider uncertainty
quantification for the expected sale price for two of the homes in our dataset. We are going to
be studying the distribution for the CV-min selected sale price prediction.

First, calculate the original sample fitted predictions for sale price for these two properties.

> xnew <- xAmes[c(1,11),]

> yhat0 <- drop(predict(cvfitAmes, xnew, select=“min”))

> exp(yhat0)

 1 11

204531.5 173117.9

Next, set the number of bootstrap estimates B and create a 2 by B matrix yhatB to fill with these
estimates.

> B <- 100

> yhatB <- matrix(nrow=2, ncol=B)

We will also use the parallel library to create a parallel cluster cl that can be used by
cv.gamlr to speed up each bootstrap iteration.

> library(parallel)

> cl <- makeCluster(detectCores())

We will now use a for loop to run through the bootstrap iterations. Note that the random
weights are drawn in the first line inside this loop with a call to rexp. The other lines run
cv.gamlr using these observation weights and then store the CV-min selected predictions in
yhatB (and print a progress report, so you have something to watch while you wait).

> for(b in 1:100){

+ wb <- rexp(nrow(xAmes))

+ fitb <- cv.gamlr(xAmes, yAmes, obsweight=wb, lmr=1e-4,
cl=cl)

+ yhatB[,b] <- drop(predict(fitb, xnew, select=“min”))

+ cat(b, “ ”)

+ }

1 2 3 4 5 ... 95 96 97 98 99 100

At the end of this loop, each column of yhatB contains a single bootstrap estimate of the
expected log sale price for our two properties.

You can calculate a 95% probability interval for each house’s sales price by exponentiating
and looking at the 2.5th and 97.5th percentiles of the bootstrap sampled prices. We do this for
each row of yhatB via the apply function.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 146 01/13/22 07:31 AMtad71671_ch03_100-150.indd 146 01/13/22 07:31 AM

146 Chapter 3 Regularization and Selection

The expected sale price range for the first house is $190k–$212k and for the second house is
$170k–$175k.

Alternatively, since we are exponentiating the predictions and introducing bias, you can
apply the bias-corrected bootstrap of Algorithm 2.3 by taking percentiles on the distribution of
bias-corrected sales prices, e y ̂ − (e y ̂ b − e y ̂) = 2 e y ̂ − e y ̂ b where y ̂ is the original sample predic-
tion and y ̂ b is a bootstrap estimate.

apply(exp(yhatB), 1, quantile, probs=c(.025,.975))

 [,1] [,2]

2.5% 190347.5 169952.7

97.5% 211883.9 175364.4

> apply(2*exp(yhat0)-exp(yhatB),1,quantile,probs=c(.025,.975))

 [,1] [,2]

2.5% 197179.1 170871.5

97.5% 218715.5 176283.1

The first house’s expected sale price interval is now $197k–$219k and the second house’s is
$171k–$176k. Note that because of the randomness in our bootstrap procedure, your results
will differ slightly when you replicate these procedures.

Example 3.11 Telemarketing Data: Parametric Bootstrap For our telemarketing example,
we will consider uncertainty quantification for the effect of call duration in minutes (durmin)
on the odds of success. Recall that we included both durmin and durmin2 as inputs in our
regression. We will use the parametric bootstrap to obtain a sampling distribution for the AICc
selected estimates for these parameters.

To run a parametric bootstrap, you need to build a function that simulates data from a fitted
model. You want to use a model that is low bias (corresponds to a small λ) for this simulator even
if it is potentially overfit. We will use the fitted probabilities from our smallest penalty fit, at λ100,
as the basis for simulating new realizations of success and failure for the marketing campaign.

> p0 <- drop(predict(fitTD ,xTD, type=“response”, select=100))

These probabilities, p0, are then used in the getBoot simulator function to draw a new random
response vector yb from a binomial distribution with prob=p0. The rest of the getBoot func-
tion fits a gamlr path for the simulated responses and returns the AICc selected coefficients on
durmin and durmin2. Note that the argument b to getboot doesn’t do anything, it is just there
for our convenience when calling this function inside parSapply.

> getBoot <- function(b){

+ yb <- rbinom(nrow(xTD),size=1,prob=p0)

+ fitTDb <- gamlr(xTD, yb, family=“binomial”)

Confirming PagesConfirming Pages

Chapter 3 Regularization and Selection 147

tad71671_ch03_100-150.indd 147 01/13/22 07:31 AMtad71671_ch03_100-150.indd 147 01/13/22 07:31 AM

The last two lines show a random draw of the coefficients from getBoot and the original sam-
ple AICc selected estimates for these same coefficients.

We will use parSapply and the parallel library to distribute 100 runs of getBoot
across multiple processors on our computer. Note that, to use parSapply, we need to call the
clusterExport function that copies a list of objects we will need inside getBoot to each
processor in the cluster.

+ coef(fitTDb)[c(“durmin”,“I(durmin^2)”),]

+ }

> getBoot(1)

 durmin I(durmin^2)

 0.154883844 -0.003303299

 > bTD[c(“durmin”,“I(durmin^2)”)]

 durmin I(durmin^2)

 0.276468974 -0.004644089

> ## run the bootstrap

> library(parallel)

> cl <- makeCluster(detectCores())

> clusterExport(cl, c(“gamlr”, “xTD”, “p0”))

> betaB <- parSapply(cl, 1:100, getBoot)

> plot(t(betaB))

The output betaB is 2 by 100 matrix containing a parametric bootstrap sample of 100 real-
izations from the sampling distribution for these two coefficients (as estimated via an AICc
Lasso). The bootstrap sample is plotted in Figure 3.15a. This is a joint distribution: the two
coefficients are correlated with each other in their sampling distribution. For a given call
length, the implied impact on the log odds of call success is available as the first coefficient
times durmin plus the second times durmin2. We create a grid of durmin values and evaluate
and plot this function for each bootstrap estimate.

> grid <- seq(0,max(tlmrk$durmin),length=200)

> dmy <- apply(betaB, 2, function(b){ b[1]*grid+b[2]*grid^2 })

> matplot(grid, dmy, col=8, type=“l”)

The bootstrap sample of effect curves is shown in Figure 3.15b along with the original sample
estimated curve. This is the additive effect on the log odds of success (getting a customer to
subscribe to a term deposit). We see that the call success probability is increasing until around
1/2 hour, and then after that it becomes decreasingly likely that the customer will subscribe.
However, there is considerable variability around the effect of durmin for long phone calls (in
the right half of Figure 3.15b) since we have few observations of calls that take longer than
30 minutes.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 148 01/13/22 07:31 AMtad71671_ch03_100-150.indd 148 01/13/22 07:31 AM

148 Chapter 3 Regularization and Selection

FIGURE 3.15 Parametric bootstrap sampling distribution for the coefficients on durmin and durmin2,
shown as a scatterplot in (a) and in terms of the implied effect on the log odds of success in (b). The original
sample estimate is shown in (b) as the dark blue curve.

(a) (b)

0.15 0.20 0.25 0.30 0.35 0 10 20 30 40 50
Durmin

I(
D

ur
m

in
ˆ2

)

lo
g

m
ul

tip
lie

r
on

 o
dd

s o
f s

uc
ce

ss

Call duration in minutes

–0
.0

06
–0

.0
04

–0
.0

02
–0

.0
00

–5
0

5
10

Confirming Pages

tad71671_ch03_100-150.indd 149 01/13/22 07:31 AM

149

QUICK REFERENCE

This chapter presented many options for estimating paths of candidate models and for selecting
among those candidates. We also introduced some key material for practical computational
analysis, including sparse model matrices and dealing with missing data. There is a lot of con-
tent here, however we emphasize that the overall procedure is really simple:

 • Fit a Lasso path to obtain multiple model estimates corresponding to different penalty
values.

 • Use CV or AICc to select the best model estimate from this path.
Everything else is context to help you adapt to practical difficulties and have a solid under-
standing of what is happening when you apply these techniques.

Key Practical Concepts

 • Lasso regression models with coefficients β are estimated to minimize the penalized
deviance

 1 _ n dev(β) + λ t ∑
j
 ∣ β j ∣

You fit the regression for a sequence of λt penalties and use model selection tools to
choose the best.

 • To build Lasso regression models, you need to create your own numeric model matrix
for input. You can do this using the sparse.model.matrix function from the Matrix
library to use efficient sparse matrix storage.
x <- sparse.model.matrix(y ~ . , data=naref(data))[,-1]

The result will be a model matrix for regressing y on all the variables in data. We
removed the intercept with [,-1]. You can use other formulas to add interactions or
include specific variables.

 • When fitting a Lasso regression, you typically want to include in your model matrix
a separate binary indicator for each level of the factor variables in your data. In the
above call to sparse.model.matrix, we applied the naref function from gamlr to
set NA as the reference level for each factor so that all other levels are represented in the
model matrix.

 • When you have missing data, you can call naref(data, impute=TRUE) to impute
missing values. For numeric variables var that include NAs, they will be replaced by
var.x with no missing values and var.miss indicating which entries have been imputed.

Confirming PagesConfirming Pages

tad71671_ch03_100-150.indd 150 01/13/22 07:31 AMtad71671_ch03_100-150.indd 150 01/13/22 07:31 AM

150 Quick Reference

 • To run a path of Lasso regressions along a sequence of penalties, with input matrix x
and response y, you call
fit <- gamlr(x, y)

and you can add family=“binomial” for logistic regression.
 • Add the argument lmr=1e-4 (or another small number) to run the path to smaller λ

than the default λ 100/λ 1 = 0.01. You should run the path to small enough penalties such
that when you look at the output of plot(fit) the AICc selection is not at the left
edge of the figure.

 • You can call coef and predict on the gamlr object fit exactly as you would for a
fitted glm object, although you will need to apply the drop function to the output if you
want to transform it to a simple array of predictions (rather than a sparse matrix).
The resulting predictions and coefficients will correspond to the AICc-selected
 segment of the Lasso path.

 • To run a CV experiment to select the optimal Lasso penalization, run
cvfit <- cv.gamlr(x, y)

and again you can add family=“binomial” for logistic regression. When calling coef
and predict on cvfit you can specify either select=“min” for CV-min selection
(choose the λt corresponding to lowest mean OOS deviance) of select=“1se” for
CV-1se selection (choose the largest λt with mean OOS deviance no more than
1 standard error larger than the minimum).

 • To run CV experiments in parallel, create a parallel cluster and pass this to
cv.gamlr as the cl argument.
cl=makceCluster(detectCores())

	Blank Page

