Table of Contents Table of Contents
Previous Page  78 / 84 Next Page
Information
Show Menu
Previous Page 78 / 84 Next Page
Page Background

CHAPTER 5

Study Guide and Review

Continued

Solve each equation.

45.

 

x

-

3​

+

5

=

15 

46.

-​

 

x

-

11​

=

3

-

√ 

 

x

47.

4

+

 

3

x

-

1​

=

8 

48.

 

m

+

3​

=

 

 2

m

+

1​ 

49.

 

 2

x

+

3​

=

3 

50.

(

x

+

1​)​

​ 

1 

_ 

4

= -

3

51.

a

​ 

1 

_ 

3

-

4

=

0 

52.

3(3

x

-

1​)​

​ 

1 

_ 

3

-

6

=

0

53.

PHYSICS 

The formula

t

=

2

π​ 

√ 

​ 

ℓ 

_ 

32

​​represents the swing

of a pendulum, where

t

is the time in seconds for the

pendulum to swing back and forth and

is the length of

the pendulum in feet. Find the length of a pendulum that

makes one swing in 2.75 seconds. 

Solve each inequality.

54.

2

+

 

3

x

-

1​

<

5 

55.

 

 3

x

+

13​

-

5

5

56.

6

-

 

 3

x

+

5​

3 

57.

 -

3

x

+

4​

-

5

3

58.

5

+

 

 2

y

-

7​

<

5 

59.

3

+

 

 2

x

-

3​

3

60.

 

 3

x

+

1​

-

 

 6

+

x

>

0

Example 6

Solve ​

 

 2

x

+

9​

-

2

=

5.

 

2

x

+

9​

-

2

=

5

Original equation

 

2

x

+

9​

=

7

Add 2 to each side.

(

 

2

x

+

9​

)

2

=

7

2

Square each side.

2

x

+

9

=

49

Evaluate the squares.

2

x

=

40

Subtract 9 from each side.

x

=

20

Divide each side by 2.

Example 7

Solve ​

 

 2

x

-

5​

+

2

>

5.

 

2

x

-

5​

0

Radicand must be

0.

2

x

-

5

0

Square each side.

2

x

5

Add 5 to each side.

x

2.5

Divide each side by 2.

The solution must be greater than or equal to 2.5 to satisfy

the domain restriction.

 

 2

x

-

5​

+

2

>

5

Original inequality

 

 2

x

-

5​

>

3

Subtract 2 from each side.

(

 

2

x

-

5​​

) 

2

>

​3​

2

Square each side.

2

x

-

5

>

9

Evaluate the squares.

2

x

>

14

Add 5 to each side.

x

>

7

Divide each side by 2.

Because

x

2.5 contains

x

>

7, the solution of the inequality

is

x

>

7.

5-6

Solving Radical Equations

364 

| 

Chapter 5 

| 

Study Guide and Review