Table of Contents Table of Contents
Previous Page  33 / 84 Next Page
Information
Show Menu
Previous Page 33 / 84 Next Page
Page Background

Perform each operation if

f

(

x

)

=

x​

2

+

x

-

12 and

g

(

x

)

=

x

-

3. State the domain of the

resulting function.

14.

(

f

-

g

)(

x

) 

15.

2(

g

·

f

)(

x

) 

16.

(

​ 

f

_

g

)

(

x

) 

17.

MULTIPLE REPRESENTATIONS 

Let

f

(

x

)

=

x

2

​and

g

(

x

)

=

x

.

a. Tabular 

Make a table showing values for

f

(

x

),

g

(

x

), (

f

+

g

)(

x

), and (

f

-

g

)(

x

).

b. Graphical 

Graph

f

(

x

),

g

(

x

), and (

f

+

g

)(

x

) on the same coordinate grid.

c. Graphical 

Graph

f

(

x

),

g

(

x

), and (

f

-

g

)(

x

) on the same coordinate grid.

d. Verbal 

Describe the relationship among the graphs of

f

(

x

),

g

(

x

), (

f

+

g

)(

x

), and (

f

-

g

)(

x

).

Use the table to find each value.

18.

(

f

+

g

)(

-

5) 

19.

(

g

-

f

)(

-

1) 

20.

(

f

g

)(3) 

21.

(

h

f

)(0) 

22.

(

​ 

f

_

g

)

(

1) 

23.

(

​ 

h

_

g

)

(0) 

24.

(

​ 

g

_

f

)

(4) 

25.

(

​ 

g

_

h

)

(

-

5) 

Use the graph of

f

(

x

) and

g

(

x

) to find each value.

26.

(

f

g

)(1)  

(

f

g

)(0)

C05_002A_903990

y

x

O

f

(

x

)

g

(

x

)

C05_003A_903990

y

x

O

f

(

x

)

g

(

x

)

28.

(

​ 

g

_

f

)

(

3)  

29.

(

​ 

f

_

g

)

(

-

2)

C05_004A_903990

y

x

O

g

(

x

)

f

(

x

)

C05_005A_903990

y

x

O

g

(

x

)

f

(

x

)

If

f

(

x

)

= -

x

+

1,

g

(

x

)

=

4x

+

2, and

h

(

x

)

=

x​

2

-

1, find each value.

30.

(2

f

+

g

)(1) 

31.

(3

f

+

2

h

)(0) 

32.

(

f

+

2

g

)(3) 

33.

(5

f

h

)(

1) 

34.

(

​ 

3

f

_

g

 ​

)

(2) 

35.

(

​ 

g

_

2

h

)

(0) 

36.

(

h

2

f

)(5) 

37.

(

f

h

)(1) 

38.

(5

h

0.1

g

)(2) 

27

x

f

(

x

)

g

(

x

)

h

(

x

)

-

5

-

8

8

2

-

2

4

5

-

10

-

1

-

2

-

4

0

0

3

-

5

-

5

3

2

0

8

4

0

-

1

7

connectED.mcgraw-hill.com

319