Perform each operation if
f
(
x
)
=
x
2
+
x
-
12 and
g
(
x
)
=
x
-
3. State the domain of the
resulting function.
14.
(
f
-
g
)(
x
)
15.
2(
g
·
f
)(
x
)
16.
(
f
_
g
)
(
x
)
17.
MULTIPLE REPRESENTATIONS
Let
f
(
x
)
=
x
2
and
g
(
x
)
=
x
.
a. Tabular
Make a table showing values for
f
(
x
),
g
(
x
), (
f
+
g
)(
x
), and (
f
-
g
)(
x
).
b. Graphical
Graph
f
(
x
),
g
(
x
), and (
f
+
g
)(
x
) on the same coordinate grid.
c. Graphical
Graph
f
(
x
),
g
(
x
), and (
f
-
g
)(
x
) on the same coordinate grid.
d. Verbal
Describe the relationship among the graphs of
f
(
x
),
g
(
x
), (
f
+
g
)(
x
), and (
f
-
g
)(
x
).
Use the table to find each value.
18.
(
f
+
g
)(
-
5)
19.
(
g
-
f
)(
-
1)
20.
(
f
•
g
)(3)
21.
(
h
•
f
)(0)
22.
(
f
_
g
)
(
−
1)
23.
(
h
_
g
)
(0)
24.
(
g
_
f
)
(4)
25.
(
g
_
h
)
(
-
5)
Use the graph of
f
(
x
) and
g
(
x
) to find each value.
26.
(
f
−
g
)(1)
(
f
•
g
)(0)
C05_002A_903990
y
x
O
f
(
x
)
g
(
x
)
C05_003A_903990
y
x
O
f
(
x
)
g
(
x
)
28.
(
g
_
f
)
(
−
3)
29.
(
f
_
g
)
(
-
2)
C05_004A_903990
y
x
O
g
(
x
)
f
(
x
)
C05_005A_903990
y
x
O
g
(
x
)
f
(
x
)
If
f
(
x
)
= -
x
+
1,
g
(
x
)
=
4x
+
2, and
h
(
x
)
=
x
2
-
1, find each value.
30.
(2
f
+
g
)(1)
31.
(3
f
+
2
h
)(0)
32.
(
−
f
+
2
g
)(3)
33.
(5
f
•
h
)(
−
1)
34.
(
3
f
_
g
)
(2)
35.
(
g
_
2
h
)
(0)
36.
(
h
−
2
f
)(5)
37.
(
−
f
−
h
)(1)
38.
(5
h
−
0.1
g
)(2)
27
x
f
(
x
)
g
(
x
)
h
(
x
)
-
5
-
8
8
2
-
2
4
5
-
10
-
1
-
2
-
4
0
0
3
-
5
-
5
3
2
0
8
4
0
-
1
7
connectED.mcgraw-hill.com319