Table of Contents Table of Contents
Previous Page  70 / 84 Next Page
Information
Show Menu
Previous Page 70 / 84 Next Page
Page Background

Practice and Problem Solving

Extra Practice is on page R5.

Solve each equation. Confirm by using a graphing calculator. 

23.

 

2

x

+

5​

-

4

=

3 

24.

6

+

 

3

x

+

1​

=

11

25.

 

x

+

6​

=

5

-

 

x

+

1​ 

26.

 

x

-

3​

=

 

x

+

4​

-

1

27.

 

x

-

15​

=

3

-

 

x​

28.

 

x

-

10​

=

1

-

 

x​

29.

6

+

 

4

x

+

8​

=

9 

30.

2

+

 

3

y

-

5​

=

10

31.

 

x

-

4​

=

 

2

x

-

13​ 

32.

 

7

a

-

2​

=

 

a

+

3​ 

33.

 

x

-

5​

-

 

x​

= -

2 

34.

 

b

-

6​

+

 

b​

=

3 

35.

SENSE-MAKING

Isabel accidentally dropped her keys from the top of a Ferris

wheel. The formula

t

=

​ 

1 

_ 

4

 

d

-

h​

describes the time

t

in seconds at which the keys are

h

meters above the ground and Isabel is

d

meters above the ground. If Isabel was

65 meters high when she dropped the keys, how many meters above the ground will

the keys be after 2 seconds?

Solve each equation.

36.

(5

n

-

6​)​

​ 

1 

_

3

+

3

=

4 

37.

(5

p

-

7​)​

​ 

1 

_

3

+

3

=

5

38.

(6

q

+

1​)​

​ 

1 

_ 

4

+

2

=

5 

39.

(3

x

+

7​)​

​ 

1 

_ 

4

-

3

=

1

40.

(3

y

-

2​)​

​ 

1 

_

5

+

5

=

6 

41.

(4

z

-

1​)​

​ 

1 

_

5

-

1

=

2

42.

2(

x

-

10​)​

​ 

1 

_

3

+

4

=

0 

43.

3(

x

+

5​)​

​ 

1 

_

3

-

6

=

0

44.

​ 

3

 

5

x

+

10​

-

5

=

0 

45.

​ 

3

 

4

n

-

8​

-

4

=

0

46.

​ 

1 

_

7

​(14

a​

)​

​ 

1 

_

3

=

1 

47.

​ 

1 

_ 

4

​(32

b​

)​

​ 

1 

_

3

=

1

48.

MULTIPLE CHOICE 

Solve ​ 

4

 

y

+

2​

+

9

=

14.

A

23 

B

53 

C

123 

D

623

49.

MULTIPLE CHOICE 

Solve (2

x

-

1​)​

​ 

1 

_

4

-

2

=

1.

F

41 

G

28 

H

13 

J

1

Solve each inequality. 

50.

1

+

 

5

x

-

2​

>

4 

51.

 

2

x

+

14​

-

6

4 

52.

10

-

 

2

x

+

7​

3

53.

6

+

 

3

y

+

4​

<

6 

54.

 

2

x

+

5  ​

-

 

9

+

x​

>

0

 

d

+

3​

+

 

d

+

7​

>

4 

56.

 

3

x

+

9​

-

2

<

7 

57.

 

2

y

+

5​

+

3

6 

58.

-

2

+

 

8

-

4

z​

8

59.

-

3

+

 

6

a

+

1​

>

4 

60.

 

2​

-

 

b

+

6​

≤ -​

 

b​

61.

 

c

+

9​

-

√ 

 

c​

>

 

3​ 

62.

PENDULUMS 

The formula

s

=

2

π​ 

√ 

 

​ 

ℓ 

_ 

32

​​represents the swing of a pendulum, where

s

is

the time in seconds to swing back and forth and

is the length of the pendulum in

feet. Find the length of a pendulum that makes one swing in 1.5 seconds.

63.

TURTLES 

The relationship between the length and weight of certain turtles can be

approximated by the equation

L

=

0.55​ 

3

 

W​

, where

L

is the length in feet and

W

is the

weight in pounds. Solve this equation for

W

.

Example 1

Example 2

Example 3

Example 4

55

356 

| 

Lesson 5-6 

| 

Solving Radical Equations